Spelling suggestions: "subject:"collaborative 3research Centre 912"" "subject:"collaborative 1research Centre 912""
41 |
Communications with 1-Bit Quantization and Oversampling at the Receiver: Benefiting from Inter-Symbol-InterferenceKrone, Stefan, Fettweis, Gerhard January 2012 (has links)
1-bit analog-to-digital conversion is very attractive for low-complexity communications receivers. A major drawback is, however, the small spectral efficiency when sampling at symbol rate. This can be improved through oversampling by exploiting the signal distortion caused by the transmission channel. This paper analyzes the achievable data rate of band-limited communications channels that are subject to additive noise and inter-symbol-interference with 1-bit quantization and oversampling at the receiver. It is shown that not only the channel noise but also the inter-symbol-interference can be exploited to benefit from oversampling.
|
42 |
Reduced Complexity Window Decoding Schedules for Coupled LDPC CodesHassan, Najeeb ul, Pusane, Ali E., Lentmaier, Michael, Fettweis, Gerhard P., Costello, Daniel J. January 2012 (has links)
Window decoding schedules are very attractive for message passing decoding of spatially coupled LDPC codes. They take advantage of the inherent convolutional code structure and allow continuous transmission with low decoding latency and complexity. In this paper we show that the decoding complexity can be further reduced if suitable message passing schedules are applied within the decoding window. An improvement based schedule is presented that easily adapts to different ensemble structures, window sizes, and channel parameters. Its combination with a serial (on-demand) schedule is also considered. Results from a computer search based schedule are shown for comparison.
|
43 |
Non-regenerative Two-Hop Wiretap Channels using Interference NeutralizationGerbracht, Sabrina, Jorswieck, Eduard A., Zheng, Gan, Ottersten, Björn January 2012 (has links)
In this paper, we analyze the achievable secrecy rates in the two-hop wiretap channel with four nodes, where the transmitter and the receiver have multiple antennas while the relay and the eavesdropper have only a single antenna each. The relay is operating in amplify-and-forward mode and all the channels between the nodes are known perfectly by the transmitter. We discuss different transmission and protection schemes like artificial noise (AN). Furthermore, we introduce interference neutralization (IN) as a new protection scheme. We compare the different schemes regarding the high-SNR slope and the high-SNR power offset and illustrate the performance by simulation results. It is shown analytically as well as by numerical simulations that the high SNR performance of the proposed IN scheme is better than the one of AN.
|
44 |
Information Leakage Neutralization for the Multi-Antenna Non-Regenerative Relay-Assisted Multi-Carrier Interference ChannelHo, Zuleita, Jorswieck, Eduard, Engelmann, Sabrina January 2013 (has links)
In heterogeneous dense networks where spectrum is shared, users' privacy remains one of the major challenges. On a multi-antenna relay-assisted multi-carrier interference channel, each user shares the spectral and spatial resources with all other users. When the receivers are not only interested in their own signals but also in eavesdropping other users' signals, the cross talk on the spectral and spatial channels becomes information leakage. In this paper, we propose a novel secrecy rate enhancing relay strategy that utilizes both spectral and spatial resources, termed as information leakage neutralization. To this end, the relay matrix is chosen such that the effective channel from the transmitter to the colluding eavesdropper is equal to the negative of the effective channel over the relay to the colluding eavesdropper and thus the information leakage to zero. Interestingly, the optimal relay matrix in general is not block-diagonal which encourages users' encoding over the frequency channels. We proposed two information leakage neutralization strategies, namely efficient information leakage neutralization (EFFIN) and local-optimized information leakage neutralization (LOPTIN). EFFIN provides a simple and efficient design of relay processing matrix and precoding matrices at the transmitters in the scenario of limited power and computational resources. LOPTIN, despite its higher complexity, provides a better sum secrecy rate performance by optimizing the relay processing matrix and the precoding matrices jointly. The proposed methods are shown to improve the sum secrecy rates over several state-of-the-art baseline methods.
|
Page generated in 0.0964 seconds