• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

RISK-TARGETED GROUND MOTION FOR PERFORMANCE- BASED BRIDGE DESIGN

Rana, Suman 01 May 2017 (has links)
The seismic design maps on ASCE 7-05, International Building Code- 2006/2009, assumed uniform hazard ground motion with 2% probability of exceedance in 50 years for the entire conterminous U.S. But, Luco et al in 2007 pointed out that as uncertainties in collapse capacity exists in structures, an adjustment on uniform hazard ground motion was proposed to develop new seismic design maps. Thus, risk-targeted ground motion with 1% probability collapse in 50 years is adopted on ASCE 7-10. Even though these seismic design maps are developed for buildings, performance-based bridge design is done using same maps. Because significance difference lies on design procedure of buildings and bridges this thesis suggests some adjustment should be made on uncertainty in the collapse capacity(β) when using for bridge design. This research is done in 3 cities of U.S— San Francisco, New Madrid and New York. Hazard curve is drawn using 2008 version of USGS hazard maps and risk- targeted ground motion is calculated using equation given by Luco et al adjusting the uncertainty in collapse capacity(β) to be 0.9 for bridge design instead of 0.8 as used for buildings. The result is compared with existing result from ASCE 7-10, which uses β=0.6. The sample design response spectrum for site classes A, B, C and D is computed for all 3 cities using equations given in ASCE 7-10 for all β. The design response spectrum curves are analyzed to concluded that adjustment on uncertainty in collapse capacity should be done on ASCE 7-10 seismic design maps to be used for performance-based bridge design.

Page generated in 0.0582 seconds