• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of Acidity in Mobilizing Colloidal Particulate Matter From Natural Sand Grain Surface

Hammons, Jessica Lynn 2011 December 1900 (has links)
Mobilization of colloidal particulate matter (most important, clay particles) from a soil matrix in the subsurface environment is an important environmental process. As many contaminants tend to adsorb onto various colloidal mineral particles, co-transport of contaminants in association with mobilized particles could contribute significantly to the migration of these contaminants in the environment. Numerous studies have observed the effects of pH on colloid mobilization but have overlooked the possible direct role of acidity. This study looked at the role of acidity with H⁺ as a chemical agent. Through cyclic elution of a natural sand column with a weak acid and base solution, there was an increase in mobilized clay colloids. It was found that low concentrations of organic acids could assist in detaching surface clays through lysing of labile Ca²⁺ and Mg²⁺ ions. The H⁺ ions sever the chemical bonds between the grain surface and the colloidal surface by being substituted for the interstitial Ca and Mg ions. This substitution has been found to release over 1 kg of surface clay per 1 mole of H⁺ consumed. It was postulated that pH oscillation addition to proton dynamics could play a major role in subsurface colloid transport. The results from this study could help improve predicting of subsurface contaminant fronts and aid in managing contaminant transport in the soil water environments.
2

Aqueous Silica in the Environment: Effects on Iron Hydroxide Surface Chemistry and Implications for Natural and Engineered Systems

Davis, Christina Clarkson 14 July 2000 (has links)
Aqueous silica is present in all natural waters and exhibits a high affinity for the surfaces of iron oxides. Therefore, it is expected to play an important role in environmental systems. Experiments were conducted to investigate the fundamentals of silica sorption onto pre-formed ferric hydroxide at pH 5.0-9.5 and silica concentrations of 0-200 mg/L as SiO₂. Over the entire pH range studied, sorption densities exceeding monolayer sorption were observed at silica levels typical of natural waters. Under some circumstances, sorption exceeded a monolayer while the particle zeta potential remained positive, a phenomenon which is inconsistent with available models. To address this deficiency, an extended surface complexation model was formulated in which soluble dimeric silica sorbs directly to iron surface sites. This model fits sorption density data up to 0.40 mol SiO₂/mol Fe, and it accurately predicts trends in zeta potential and the observed H⁺ release during silica sorption to ferric hydroxide at pH 5.0 and 6.0. A second phase of research was aimed at identifying the practical implications of silica sorption to iron hydroxide in natural and engineered systems. Two types of surfaces were prepared by exposing pre-formed Fe(OH)₃ to aqueous silica (0-200 mg/L as SiO₂) for periods of 1.5 hours or 50 days. The concentration of pre-formed iron passing through a 0.45 micron pore size filter at pH 6.0-9.5 increased as the solids aged in the presence of silica. Consistent with formation of small, stable colloids, "soluble" iron concentrations exceeded 0.2 mg/L only at zeta potentials <span style="text-decoration:underline"><</span> -15 mV. When arsenate was added to iron hydroxide particles equilibrated with silica for 1.5 hours, percentage arsenate removals were high. In contrast, arsenate removals decreased markedly as pH and silica concentrations increased if silica was pre-equilibrated with the iron for 50 days. Trends in percentage removal of humic substances were similar. Competition for sorption sites was the main cause of hindered anionic contaminant removal. However, interference with hydrolysis and precipitation are expected to be important under some circumstances, particularly during water treatment. / Master of Science

Page generated in 0.0767 seconds