• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Laponite Pluronic Composite for Foaming Applications

Davis, James William 12 1900 (has links)
The focus of the following research was to provide an optimized particle stabilized foam of Laponite and Pluronic L62 in water by understanding (1) the Laponite-Pluronic interactions and properties for improved performance in a particle stabilized foam and (2) the interfacial properties between air and the Laponite-Pluronic complex. These studies were conducted using both bulk and interfacial rheology, XRD, sessile droplet, TGA and UV-vis. Two novel and simple techniques, lamella break point and capillary breakup extensional rheometry, were used to both understand the Laponite Pluronic L62 interaction and determine a different mechanism for foaming properties. Bulk rheological properties identified an optimal Laponite concentration of 2% with Pluronic L62 ranging from 2.5% and 6.5%, due to the ease of flow for the dispersion. The Pluronic L62 was observed to enhance the Laponite bulk rheological properties in solution. Additionally TGA showed a similar trend in thermal resistance to water with both addition of Laponite and Pluronic L62. XRD demonstrated that 0.25% Pluronic intercalated into Laponite from dried 2% Laponite films. XRD demonstrated that the Laponite matrix was saturated at 1% Pluronic L62. UV-vis demonstrated that a monolayer of Pluronic L62 is observed up to 0.65% Pluronic L62 onto Laponite. Interfacial rheology showed that Laponite enhances Pluronic L62 at the air-liquid interface by improving the storage modulus as low at 0.65% Pluronic L62 with 2% Laponite. The lamella breakpoint of Laponite with Pluronic films indicate strong film interaction due to higher increases in mass. Extensional rheology indicates that 2.5% to 6.5% Pluronic with 2% Laponite show the most filament resistance to stretching.

Page generated in 0.1027 seconds