• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Silicon Nanoparticle Synthesis and Modeling for Thin Film Solar Cells

Albu, Zahra 30 April 2014 (has links)
Nanometer-scale silicon shows extraordinary electronic and optical properties that are not available for bulk silicon, and many investigations toward applications in optoelectronic devices are being pursued. Silicon nanoparticle films made from solution are a promising candidate for low-cost solar cells. However, controlling the properties of silicon nanoparticles is quite a challenge, in particular shape and size distribution, which effect device performance. At present, none of the solar cells made from silicon nanoparticle films have an efficiency exceeding the efficiency of those based on crystalline silicon. To address the challenge of controlling silicon nanoparticle properties, both theoretical and experimental investigations are needed. In this thesis, we investigate silicon nanoparticle properties via quantum mechanical modeling of silicon nanoparticles and synthesis of silicon nanoparticle films via colloidal grinding. Silicon nanoparticles with shapes including cubic, rectangular, ellipsoidal and flat disk are modeled using semi-empirical methods and configuration interaction. Their electronic properties with different surface passivation were also studied. The results showed that silicon nanoparticles with hydrogen passivation have higher HOMOLUMO gaps, and also the HOMO-LUMO gap depends on the size and the shape of the particle. In contrast, silicon nanoparticles with oxygen passivation have a lower HOMO-LUMO gap. Raman spectroscopy calculation of silicon nanoparticles show peak shift and asymmetric broadening similar to what has been observed in experiment. Silicon nanoparticle synthesis via colloidal grinding was demonstrated as a straightforward and inexpensive approach for thin film solar cells. Data analysis of silicon particles via SEM images demonstrated that colloidal grinding is effective in reducing the Si particle size to sub-micron in a short grinding time. Further increases in grinding time, followed by filtration demonstrated a narrowing of the Si particle size and size-distribution to an average size of 70 nm. Raman spectroscopy and EDS data demonstrated that the Si nanoparticles contain oxygen due to exposure to air during grinding. I-V characterization of the milled Si nanoparticles showed an ohmic behaviour with low current at low biases then Schottky diode behaviour or a symmetric curve at large biases. / Graduate / 0794 / 0544 / zahraalbu@hotmail.com
2

Silicon Nanoparticle Synthesis and Modeling for Thin Film Solar Cells

Albu, Zahra 30 April 2014 (has links)
Nanometer-scale silicon shows extraordinary electronic and optical properties that are not available for bulk silicon, and many investigations toward applications in optoelectronic devices are being pursued. Silicon nanoparticle films made from solution are a promising candidate for low-cost solar cells. However, controlling the properties of silicon nanoparticles is quite a challenge, in particular shape and size distribution, which effect device performance. At present, none of the solar cells made from silicon nanoparticle films have an efficiency exceeding the efficiency of those based on crystalline silicon. To address the challenge of controlling silicon nanoparticle properties, both theoretical and experimental investigations are needed. In this thesis, we investigate silicon nanoparticle properties via quantum mechanical modeling of silicon nanoparticles and synthesis of silicon nanoparticle films via colloidal grinding. Silicon nanoparticles with shapes including cubic, rectangular, ellipsoidal and flat disk are modeled using semi-empirical methods and configuration interaction. Their electronic properties with different surface passivation were also studied. The results showed that silicon nanoparticles with hydrogen passivation have higher HOMOLUMO gaps, and also the HOMO-LUMO gap depends on the size and the shape of the particle. In contrast, silicon nanoparticles with oxygen passivation have a lower HOMO-LUMO gap. Raman spectroscopy calculation of silicon nanoparticles show peak shift and asymmetric broadening similar to what has been observed in experiment. Silicon nanoparticle synthesis via colloidal grinding was demonstrated as a straightforward and inexpensive approach for thin film solar cells. Data analysis of silicon particles via SEM images demonstrated that colloidal grinding is effective in reducing the Si particle size to sub-micron in a short grinding time. Further increases in grinding time, followed by filtration demonstrated a narrowing of the Si particle size and size-distribution to an average size of 70 nm. Raman spectroscopy and EDS data demonstrated that the Si nanoparticles contain oxygen due to exposure to air during grinding. I-V characterization of the milled Si nanoparticles showed an ohmic behaviour with low current at low biases then Schottky diode behaviour or a symmetric curve at large biases. / Graduate / 0794 / 0544 / zahraalbu@hotmail.com

Page generated in 0.0493 seconds