• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 453
  • 35
  • 25
  • 9
  • 6
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 617
  • 93
  • 63
  • 59
  • 54
  • 49
  • 43
  • 41
  • 41
  • 40
  • 39
  • 32
  • 29
  • 29
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Surface thermodynamic properties of subsurface colloids

Shang, Jianying 2008 (has links) (PDF)
Thesis (Ph. D.)--Washington State University, August 2008. Includes bibliographical references (p. 165-187).
2

A study of the stability of Bredig gold sols ...

Low, Fletcher 1927 (has links)
Thesis (Ph. D.)--Columbia University, 1927. Vita. Bibliography: p. 43.
3

Engineering the structures and shapes of colloidal particles

Lu, Yu 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. Vita. Includes bibliographical references (leaves 131-142).
4

Studies of chemomechanical gels and collective behavior in chemical systems

Huang, Zhaoyang Unknown Date (has links)
Thesis (Ph. D.)--West Virginia University, 2009. Title from document title page. Document formatted into pages; contains xiv, 150 p. : ill. (some col.) + 3 zip files. Includes three supplementary zip files. Includes abstract. Includes bibliographical references.
5

Ueber den Quellungsdruck

Posnjak, Eugen 1912 (has links)
Thesis (doctoral)--Universität Leipzig, 1912. "Erscheint gleichzeitig in den 'Kolloidchemischen Beiheften' (Ergänzungshefte zur 'Kolloid-Zeitschrift'), Monographien für reine und angewandte Kolloidchemie, Band III, Heft 12." Pages also numbered [417]-456. Vita. Includes bibliographical references.
6

Structure and diffusion in dense confined colloidal suspensions

Cui, Bianxiao. 2002 (has links)
Thesis (Ph. D.)--University of Chicago, Department of Chemistry, August 2002. Includes bibliographical references. Also available on the Internet.
7

Molecular hydrogels : design, synthesis, enzymatic regulation, and biological applications

Yang, Zhimou. 2006 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2006. Includes bibliographical references. Also available in electronic version.
8

Rigid and deformable particles in flowing suspensions.

Gauthier, François Jean. 1970 (has links)
No description available.
9

The synthesis and properties of some polymer hydrogels

Hird, Bryn 1984 (has links)
The interactions between water molecules and polyelectrolyte species in aqueous solutions are reviewed and are used to infer interactions occuring in swollen crosslinked polyelectrolyte hydrogels. Linear poly(acrylic acid ) and derivatives neutralised to varying degrees with alkali-metal hydroxides are prepared and characterised. Samples of these compounds are crosslinked by 'Y - irradiation to form hydrogels. Hydration studies on linear polymers, crosslinked material and a commercial polyacrylate hydrogel indicate a possible hydration structure and provide some insight into the nature of water-polymer interactions within a sHollen polyacrylate gel. KMBT_363 Adobe Acrobat 9.53 Paper Capture Plug-in
10

Deposition of colloidal spheres under quiescent conditions

Tan, Chai Geok 1987 (has links)
The phenomenon of deposition (or release) of fine particles or other microscopic species, suspended in a liquid, onto (or from) a foreign substrate surface plays a critical role in many natural and industrial processes. Traditionally, the analysis of this phenomenon has been conceptually divided into two steps — the transport step and the adhesion step. Attempts to understand the role of the adhesion step on the overall deposition process under most practical situations are complicated by the presence of a large number of interdependent parameters such as double layer thickness, particle and wall zeta-potential, particle size and flow, amongst others. Thus, as a first step towards gaining a better understanding of the phenomenon, an experimental study of a very simple deposition system, where only the random nature of the deposition process and the double layer interactions between deposited particles are important, was undertaken. In this idealized system, a stable suspension of monodispersed, negatively charged colloidal silica spheres one micron in diameter, suspended in an aqueous medium in a specially constructed deposition cell, were allowed to settle by gravity and be deposited permanently onto a cationic polymer-coated glass cover slip. The magnitude of surface potential was altered by adjusting the pH of the suspension using NaOH and HC1, while the electrical double layer thickness was varied by dissolving different predetermined quantities of KC1 into the suspension. The results showed that the trends in the experimental surface coverages obtained were in accordance with expectation in that as the double layer thickness, 1/К, or the particle zeta potential, ζ⍴’ , increased (leading to an increase in the interaction energy between the particles), the surface coverage decreased. Furthermore, the extent of surface coverages obtained when both 1/К and ζ⍴ were changed was found to be greater than that when 1/К alone was used as the controlling variable. A separate series of studies examining the effect of substrate double layer thickness on surface coverage was also performed by dissolving different predetermined quantities of K₃PO₄, into the suspension so that the substrate and the particles could differ in their respective double layer thicknesses. The results of surface coverages obtained in this study showed that the influence exerted by the substrate double layer was negligible. Besides these findings, the presence of geometric exclusion due to the random nature of the deposition process was also noted, although its effect was difficult to quantify. Besides the systematic experimental study of colloidal deposition, attempts were made to develop two computer simulation models to generate deposition prediction which could be compared with results measured experimentally. The first scheme involved a two-dimensional simple rejection model where only non-overlapping particles were deposited, while the second scheme consisted of a three-dimensional model where the rolling of sedimenting particles over the surfaces of previously-deposited particles as well as the stacking of particles were allowed. Comparison of experimental results with those obtained using the two-dimensional model revealed that for all cases, the simulated results consistently underpredicted the experimental results due to the oversimplifying nature of the simulation. The trends in the experimentally obtained results, however, were approximated by the simulated results. Owing to its very complex nature, successful completion of the three-dimensional model simulation did not materialize. It is expected, however, that when such a model is successfully completed, it will yield predicted results which are in better quantitative agreement with those measured experimentally. Besides the above, a separate study examining the effects of reaction temperature and the types of alcoholic solvent used on the properties of silica particles produced was also performed. This study led to the development of a novel method in which dispersed, uniform-sized, spherical silica particles in the size range of 0.2 to 2.0 µm can be produced by simply varying the reaction temperature and the type of alcoholic solvent used. Applied Science, Faculty of Chemical and Biological Engineering, Department of Graduate

Page generated in 0.0287 seconds