Spelling suggestions: "subject:"color invariance"" "subject:"color lnvariance""
1 |
Casamento de padrões em imagens digitais livre de segmentação e invariante sob transformações de similaridade. / Segmentation-free template matching in digital images invariant to similarity transformations.Araújo, Sidnei Alves de 21 October 2009 (has links)
Reconhecimento de padrões em imagens é um problema clássico da área de visão computacional e consiste em detectar um padrão ou objeto de referência (template) em uma imagem digital. A maioria dos métodos para esta finalidade propostos na literatura simplifica as imagens por meio de operações como binarização, segmentação e detecção de bordas ou pontos de contorno, para em seguida extrair um conjunto de atributos descritores. O problema é que esta simplificação pode descartar informações importantes para descrição dos padrões, fazendo diminuir a robustez do processo de detecção. Um método eficiente deve ter a habilidade de identificar um padrão sujeito a algumas transformações geométricas como rotação, escalonamento, translação, cisalhamento e, no caso de métodos para imagens coloridas, deve ainda tratar do problema da constância da cor. Além disso, o conjunto de atributos que descrevem um padrão deve ser pequeno o suficiente para viabilizar o desenvolvimento de aplicações práticas como um sistema de visão robótica ou um sistema de vigilância. Estes são alguns dos motivos que justificam os esforços empreendidos nos inúmeros trabalhos desta natureza encontrados na literatura. Neste trabalho é proposto um método de casamento de padrões em imagens digitais, denominado Ciratefi (Circular, Radial and Template-Matching Filter), livre de segmentação e invariante sob transformações de similaridade, brilho e contraste. O Ciratefi consiste de três etapas de filtragem que sucessivamente descartam pontos na imagem analisada que não correspondem ao padrão procurado. Também foram propostas duas extensões do Ciratefi, uma que utiliza operadores morfológicos na extração dos atributos descritores, denominada Ciratefi Morfológico e outra para imagens coloridas chamada de color Ciratefi. Foram realizados vários experimentos com o intuito de comparar o desempenho do método proposto com dois dos principais métodos encontrados na literatura. Os resultados experimentais mostram que o desempenho do Ciratefi é superior ao desempenho dos métodos empregados na análise comparativa. / Pattern recognition in images is a classical problem in computer vision. It consists in detecting some reference pattern or template in a digital image. Most of the existing pattern recognition techniques usually apply simplifications like binarization, segmentation, interest points or edges detection before extracting features from images. Unfortunately, these simplification operations can discard rich grayscale information used to describe the patterns, decreasing the robustness of the detection process. An efficient method should be able to identify a pattern subject to some geometric transformations such as translation, scale, rotation, shearing and, in the case of color images, should deal with the color constancy problem. In addition, the set of features that describe a pattern should be sufficiently small to make feasible practical applications such as robot vision or surveillance system. These are some of the reasons that justify the effort for development of many works of this nature found in the literature. In this work we propose a segmentation-free template matching method named Ciratefi (Circular, Radial and Template-Matching Filter) that is invariant to rotation, scale, translation, brightness and contrast. Ciratefi consists of three cascaded filters that successively exclude pixels that have no chance of matching the template from further processing. Also we propose two extensions of Ciratefi, one using the mathematical morphology approach to extract the descriptors named Morphological Ciratefi and another to deal with color images named Color Ciratefi. We conducted various experiments aiming to compare the performance of the proposed method with two other methods found in the literature. The experimental results show that Ciratefi outperforms the methods used in the comparison analysis.
|
2 |
Casamento de padrões em imagens digitais livre de segmentação e invariante sob transformações de similaridade. / Segmentation-free template matching in digital images invariant to similarity transformations.Sidnei Alves de Araújo 21 October 2009 (has links)
Reconhecimento de padrões em imagens é um problema clássico da área de visão computacional e consiste em detectar um padrão ou objeto de referência (template) em uma imagem digital. A maioria dos métodos para esta finalidade propostos na literatura simplifica as imagens por meio de operações como binarização, segmentação e detecção de bordas ou pontos de contorno, para em seguida extrair um conjunto de atributos descritores. O problema é que esta simplificação pode descartar informações importantes para descrição dos padrões, fazendo diminuir a robustez do processo de detecção. Um método eficiente deve ter a habilidade de identificar um padrão sujeito a algumas transformações geométricas como rotação, escalonamento, translação, cisalhamento e, no caso de métodos para imagens coloridas, deve ainda tratar do problema da constância da cor. Além disso, o conjunto de atributos que descrevem um padrão deve ser pequeno o suficiente para viabilizar o desenvolvimento de aplicações práticas como um sistema de visão robótica ou um sistema de vigilância. Estes são alguns dos motivos que justificam os esforços empreendidos nos inúmeros trabalhos desta natureza encontrados na literatura. Neste trabalho é proposto um método de casamento de padrões em imagens digitais, denominado Ciratefi (Circular, Radial and Template-Matching Filter), livre de segmentação e invariante sob transformações de similaridade, brilho e contraste. O Ciratefi consiste de três etapas de filtragem que sucessivamente descartam pontos na imagem analisada que não correspondem ao padrão procurado. Também foram propostas duas extensões do Ciratefi, uma que utiliza operadores morfológicos na extração dos atributos descritores, denominada Ciratefi Morfológico e outra para imagens coloridas chamada de color Ciratefi. Foram realizados vários experimentos com o intuito de comparar o desempenho do método proposto com dois dos principais métodos encontrados na literatura. Os resultados experimentais mostram que o desempenho do Ciratefi é superior ao desempenho dos métodos empregados na análise comparativa. / Pattern recognition in images is a classical problem in computer vision. It consists in detecting some reference pattern or template in a digital image. Most of the existing pattern recognition techniques usually apply simplifications like binarization, segmentation, interest points or edges detection before extracting features from images. Unfortunately, these simplification operations can discard rich grayscale information used to describe the patterns, decreasing the robustness of the detection process. An efficient method should be able to identify a pattern subject to some geometric transformations such as translation, scale, rotation, shearing and, in the case of color images, should deal with the color constancy problem. In addition, the set of features that describe a pattern should be sufficiently small to make feasible practical applications such as robot vision or surveillance system. These are some of the reasons that justify the effort for development of many works of this nature found in the literature. In this work we propose a segmentation-free template matching method named Ciratefi (Circular, Radial and Template-Matching Filter) that is invariant to rotation, scale, translation, brightness and contrast. Ciratefi consists of three cascaded filters that successively exclude pixels that have no chance of matching the template from further processing. Also we propose two extensions of Ciratefi, one using the mathematical morphology approach to extract the descriptors named Morphological Ciratefi and another to deal with color images named Color Ciratefi. We conducted various experiments aiming to compare the performance of the proposed method with two other methods found in the literature. The experimental results show that Ciratefi outperforms the methods used in the comparison analysis.
|
3 |
IVORA (Image and Computer Vision for Augmented Reality) : Color invariance and correspondences for the definition of a camera/video-projector system / IVORA (Image et Vision par Ordinateur pour la Réalité Augmentée) : Invariance colorimétrique et correspondances pour la définition d'un système projecteur/caméraSetkov, Aleksandr 27 November 2015 (has links)
La Réalité Augmentée Spatiale (SAR) vise à superposer spatialement l'information virtuelle sur des objets physiques. Au cours des dernières décennies ce domaine a connu une grande expansion et est utilisé dans divers domaines, tels que la médecine, le prototypage, le divertissement etc. Cependant, pour obtenir des projections de bonne qualité, on doit résoudre plusieurs problèmes, dont les plus importants sont la gamme de couleurs réduite du projecteur, la lumière ambiante, la couleur du fond, et la configuration arbitraire de la surface de projection dans la scène. Ces facteurs entraînent des distorsions dans les images qui requièrent des processus de compensation complémentaires.Les projections intelligentes (smart projections) sont au cœur des applications de SAR. Composées d'un dispositif de projection et d'un dispositif d'acquisition, elles contrôlent l'aspect de la projection et effectuent des corrections à la volée pour compenser les distorsions. Bien que les méthodes actives de Lumière Structurée aient été utilisées classiquement pour résoudre ces problèmes de compensation géométrique, cette thèse propose une nouvelle approche non intrusive pour la compensation géométrique de plusieurs surfaces planes et pour la reconnaissance des objets en SAR s'appuyant uniquement sur la capture du contenu projeté.Premièrement, cette thèse étude l'usage de l'invariance couleur pour améliorer la qualité de la mise en correspondance entre primitives dans une configuration d'acquisition des images vidéoprojetées. Nous comparons la performance de la plupart des méthodes de l'état de l'art avec celle du descripteur proposé basé sur l'égalisation d'histogramme. Deuxièmement, pour mieux traiter les conditions standard des systèmes projecteur-caméra, deux ensembles de données de captures de projections réelles, ont été spécialement préparés à des fins expérimentales. La performance de tous les algorithmes considérés est analysée de façon approfondie et des propositions de recommandations sont faites sur le choix des algorithmes les mieux adaptés en fonction des conditions expérimentales (paramètres image, disposition spatiale, couleur du fond...). Troisièmement, nous considérons le problème d'ajustement multi-surface pour compenser des distorsions d'homographie dans les images acquises. Une combinaison de mise en correspondance entre les primitives et de Flux Optique est proposée afin d'obtenir une compensation géométrique plus rapide. Quatrièmement, une nouvelle application en reconnaissance d'objet à partir de captures d'images vidéo-projetées est mise en œuvre. Finalement, une implémentation GPU temps réel des algorithmes considérés ouvre des pistes pour la compensation géométrique non intrusive en SAR basée sur la mise en correspondances entre primitives. / Spatial Augmented Reality (SAR) aims at spatially superposing virtual information on real-world objects. Over the last decades, it has gained a lot of success and been used in manifold applications in various domains, such as medicine, prototyping, entertainment etc. However, to obtain projections of a good quality one has to deal with multiple problems, among them the most important are the limited projector output gamut, ambient illumination, color background, and arbitrary geometric surface configurations of the projection scene. These factors result in image distortions which require additional compensation steps.Smart-projections are at the core of PAR applications. Equipped with a projection and acquisitions devices, they control the projection appearance and introduce corrections on the fly to compensate distortions. Although active structured-light techniques have been so far the de-facto method to address such problems, this PhD thesis addresses a relatively new unintrusive content-based approach for geometric compensation of multiple planar surfaces and for object recognition in SAR.Firstly, this thesis investigates the use of color-invariance for feature matching quality enhancement in projection-acquisition scenarios. The performance of most state-of-the art methods are studied along with the proposed local histogram equalization-based descriptor. Secondly, to better address the typical conditions encountered when using a projector-camera system, two datasets of real-world projections were specially prepared for experimental purposes. Through a series of evaluation frameworks, the performance of all considered algorithms is thoroughly analyzed, providing several inferences on that which algorithms are more appropriate in each condition. Thirdly, this PhD work addresses the problem of multiple-surface fitting used to compensate different homography distortions in acquired images. A combination of feature matching and Optical Flow tracking is proposed in order to achieve a more low-weight geometric compensation. Fourthly, an example of new application to object recognition from acquired projections is showed. Finally, a real-time implementation of considered methods on GPU shows prospects for the unintrusive feature matching-based geometric compensation in SAR applications.
|
Page generated in 0.0581 seconds