• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 11
  • Tagged with
  • 28
  • 28
  • 28
  • 28
  • 14
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Removal of aquatic organic matter and humic substances by selected water treatment processes

Collins, Michael Robin January 1985 (has links)
The characteristics of dissolved aquatic organic matter present in four natural water sources, as well as corresponding treated waters derived from eight water treatment plants, is described. An assessment is made of the performance of direct filtration, conventional treatment, and lime softening in removing trihalomethane (THM) precursors from a diverse array of water sources. A comparison is made between conventional treatment and direct filtration in removing THM precursors from a common natural water source, the Colorado River. In addition, the effect of selected initial conditions and operating parameters on the direct filtration process are evaluated by using a synthetic water/bench-scale apparatus. Important characteristics of the organic matter, including molecular weight (MW) distribution, carboxylic acidity and humic substances content, appear to affect the removal of this organic material. As a general rule, THM reactivity or yield (ug THM/mg C) increases with MW. The <10,000 MW range was found to be the most consistent reactive fraction of aquatic organic matter. All of the various treatments preferentially removed the most reactive fraction of precursor present in each MW range. None of the various treatments proved to be very effective in removing precursor material below a MW of <500. Humic molecules, with the highest carboxylic acidity and hence highest charge density, are generally more difficult to remove by alum coagulation. All of the various treatment processes studied preferentially removed hydrophobic over hydrophilic aquatic organic matter. None of the source related conditions (fulvic acid, kaolinite, pH) nor process-related conditions (flocculation velocity gradient, mixing time, prechlorination, preozonation) evaluated under the same experimental conditions exerted a major impact upon the performance of the bench-scale direct filtration process. Larger sized particles may be easier to remove by bench-scale treatment, but removal of the smaller particles may result in better removals of organic matter as quantified by NVTOC and UV Absorbance.
22

The effects of activated carbon adsorption and ozonation on trihalomethane speciation

Tan, Lo, 1963- January 1989 (has links)
Two surface water sources in the southwestern United States, Colorado River Water (CRW) and California State Project Water (SPW), were studied in bench-scale experiments examining two Trihalomethane (THM) precursor removal processes, activated carbon adsorption and ozone oxidation. Both source water contained bromide (Br-) ion leading to brominated THMs upon chlorination. Activated carbon removed THM precursors, as measured by dissolved organic carbon (DOC), while having little effect on bromide. The net result was an increase in the ratio of Br-/DOC and an increase in the relative abundance of brominated THMs. Ozone oxidized higher molecular weight precursor molecules into lower molecular weight by-products which were less reactive with chlorine. Moreover, ozonation transformed Br- to hypobromous acid (an "in-situ" oxidant), leading to an increase in the percentage of brominated THMs.
23

Predicting channel stability in Colorado mountain streams using hydrobiogeomorphic and land use data : a cost-sensitive machine learning approach to modeling rapid assessment protocols

Mor��t, Stephanie L. 16 March 2001 (has links)
Natural resource data are typically non-linear and complex, yet modeling methods often utilize statistical analysis techniques, such as regression, that are insufficient for use on such data. This research proposes an innovative modeling method based on pattern recognition techniques borrowed from the field of machine learning. These techniques make no data distribution assumptions, can fit non-linear data, can be effective on a small data set, and can be weighted to include relative costs of different predictive errors. Rapid Assessment Protocols (RAPs) are commonly used to collect, analyze, and interpret stream data to assist diverse management decisions. A modeling method was developed to predict the outcome of a RAP in an effort to improve accurate prediction, weighted for cost-effectiveness and safety, while prioritizing investigations and improving monitoring. This method was developed using channel stability data collected from 58 high-elevation streams in the Upper Colorado River Basin. The purpose of the research was to understand the relationships of channel stability to several hydrobiogeomorphic features, easily derived from paper or electronic maps, in an effort to predict channel stability. Given that the RAP used was developed to evaluate channel stability, the research determined: 1) relationships between channel stability and major land-use and hydrobiogeomorphic features, and 2) if a predictive model could be developed to aid in identifying unstable channel reaches while minimizing costs, for the purpose of land management. This research used Pearson's and chi-squared correlations to determine associative relationships between channel stability and major land-use and hydrobiogeomorphic features. The results of the Pearson's correlations were used to build and test classification models using randomly selected training and test sets. The modeling techniques assessed were regression, single decision trees, and bagged (bootstrap aggregated) decision trees. A cost analysis / prediction (CAP) model was developed to incorporate cost-effectiveness and safety into the models. The models were compared based on their 1) performance and 2) operational advantages and disadvantages. A reliable predictive model was developed by integrating a CAP model, receiving operator characteristic curves, and bagged decision trees. This system can be used in conjunction with a GIS to produce maps to guide field investigations. / Graduation date: 2001
24

Geomorphology of debris flows and alluvial fans in Grand Canyon National Park and their influence on the Colorado River below Glen Canyon Dam, Arizona

Melis, Theodore S. January 1997 (has links)
Debris flows in at least 529 Grand Canyon tributaries transport poorly-sorted clayto boulder-sized sediment into the Colorado River, and are initiated by failures in weathered bedrock, the "fire-hose effect," and classic soil-slips often following periods of intense rainfall coincident with multi-day storms. Recent debris flows had peak-discharges from about 100-300 m3/s. Twentieth-century debris flows occurred from once every 10-15 years in eastern tributaries, to once in over a century in western drainage areas. Systemwide, debris flows likely recur about every 30-50 years, and the largest recent flows were initiated during Pacific-Ocean storms in autumn and winter. Three idealized hydrographs are inferred for recent debris flows based on deposits and flow evidence: Type I, has a single debris-flow peak followed by a decayed recessional streamflow; Type II, has multiple, decreasing debris-flow peaks with intervening flow transformations between debris flow and non-debris flow phases; and Type III, may have either a simple or complex debris-flow phase (begin as either Type I or II), followed by a larger streamflow peak that reworks or buries debris-flow deposits under streamflow gravel deposits. From 1987 through 1995, at least 25 debris flows constricted the Colorado River, creating 2 rapids and enlarging at least 9 riffles or rapids. In March-April, 1996, reworking effects of a 7-day controlled flood release (peak = 1,300 m³/s) on 18 aggraded debris fans in Grand Canyon were studied. Large changes occurred at the most-recent deposits (1994-1995), but several other older deposits (1987-1993) changed little. On the most-recent fan deposits, distal margins became armored with cobbles and boulders, while river constriction, flow velocity, and streampower were decreased. Partial armoring of fan margins by relatively-low mainstem flows since the debris flows occurred, was an important factor limiting fan reworking because particles became interlocked and imbricated, allowing them to resist transport during the flood. Similar future floods will accomplish variable degrees of fan reworking, depending on the extent that matrix-supported sediments are winnowed by preceding mainstem flows.
25

Energy budget study lower Colorado River, Arizona

Choate, Michael Landon, 1946- January 1973 (has links)
No description available.
26

Simulating the effects of dam releases on Grand Canyon river trips

Borkan, Ronald E., January 1986 (has links) (PDF)
Thesis (M.S. - Renewable Natural Resources)--University of Arizona, 1986. / Includes bibliographical references (leaves 78-80).
27

Fluid boundaries : Southern California, Baja California, and the conflict over the Colorado River, 1848-1944 /

Boime, Eric I. January 2002 (has links)
Thesis (Ph. D.)--University of California, San Diego, 2002. / Vita. Includes bibliographical references (leaves 406-419).
28

Neogene stratigraphy of the Fish Creek-Vallecito section, southern California : implications for early history of the northern Gulf of California and Colorado Delta

Winker, Charles David, 1952- January 1987 (has links)
The Fish Creek-Vallecito section is the most stratigraphically complete and structurally intact Neogene exposure in the Salton Trough, and thus provides a useful reference section for regional stratigraphie revision and historical interpretation of the early Gulf of California and Colorado Delta. The section comprises a marine sequence (Imperial Formation) bracketed by nonmarine units (Split Mountain and Alverson Formations below, Palm Spring Formation and Canebrake Conglomerate above). Recognition of distinct suites of locally-derived and Colorado River-derived sediment, combined with sedimentological evidence, led to revision of this sequence in terms of informal members and geneticstratigraphic units: (1) pre-rift braided-stream deposits (2) syn-rift fanglomerates and volcanics, with local pre-marine evaporites; (3) pre-deltaic marine units, deposited primarily as small fan deltas; a progradational sequence of the ancestral Colorado delta, consisting of (4) an upward-shoaling marine sequence, and (5) a nonmarine deltaplain sequence; (6) lacustrine units; and (7) locally-derived basinmargin alluvium that interfingers with (4), (5) and (6). Neogene palinspastic base maps for paleogeographic mapping were based on displacement histories for the Pacific-North American plate boundary and its constituent faults. The tectonic-sedimentary history consists of: (1) early to middle Miocene rifting that propagated southward from southern California to the Gulf mouth; (2) northward marine transgression of the rift basin, reaching southern California by the late Miocene; (3) development of the San Andreas-Gulf of California transform boundary by inboard transfer of intraplate slip; (4) earliest Pliocene initiation of the lower Colorado River and Delta by rapid epeirogenic uplift of the Bouse Embayment; and (5) late Pliocene or Pleistocene transpressive uplift in the western Salton Trough caused by outboard transfer of slip from the San Andreas fault. The stratigraphic succession in the western Salton Trough resulted largely from tectonic transport through a series of paleoenvironments anchored to the North American plate by the entry point of the Colorado River.

Page generated in 0.0765 seconds