• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 319
  • 123
  • 75
  • 29
  • 27
  • 26
  • 16
  • 14
  • 12
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 772
  • 772
  • 76
  • 61
  • 60
  • 50
  • 47
  • 44
  • 43
  • 43
  • 42
  • 42
  • 39
  • 39
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Utility Assessment of Health-related Quality of Life (HRQOL) in Colorectal Cancer Patients: A Mixed Methodology Study

Costa, Sarah E. 06 December 2011 (has links)
Background: Variation exists in quality of life (i.e., utility) estimates depending on the utility elicitation method utilized. Using the EQ-5D, VAS, and HUI-III, the aim of this thesis was to determine whether these measures adequately capture HRQOL in a CRC population and assess the relationship between utility estimates generated. Methods: A mixed methods study design was employed to collect health status scores and interview data from a sample of 50 CRC patients in Toronto, Ontario. Results: Mean utility scores between the EQ-5D and HUI-III were identical at 0.76 (95% CI), with an overall VAS score of 0.72 (95% CI). Conclusion: The fact that the EQ-5D and HUI-III resulted in identical mean utility scores provides assurance for future studies using these tools in CRC. However, many factors that CRC patients identify as important to their HRQOL are not captured by these instruments. These findings have implications for informing economic evaluations.
322

The Effect of the Colon Cancer Check Program on Colorectal Cancer Screening in Ontario

Honein, Gladys 15 August 2013 (has links)
Background: This thesis is composed of three studies testing the effect of the Colon Cancer Check (CCC) program, the organized screening program for colorectal cancer in Ontario, on screening participation. In the first paper, we described the trends of participation to Fecal Occult Blood Test (FOBT) and endoscopy, and the trend of ‘up-to-date’ consistent with guidelines, overall and stratified by demographic characteristics between 2005 and 2011. In the second paper, we tested the effect of physician’s recommendation on FOBT participation and disparities in participation. In the third paper, we measured the effect of the CCC program on FOBT participation using an interrupted time series. Methods: We identified six annual cohorts of individuals eligible for CRC screening in Ontario between 2005 and 2011 by linking the Registered Persons Database to Ontario Health Insurance Plan and 2006 Census from Statistics Canada. We used descriptive statistics to describe the trends of participation. The effect of physician’s recommendation on screening participation was tested using multiple logistic regression analysis. The effect of the CCC program on FOBT participation was tested using segmented regression analysis. Results: An increasing trend in FOBT participation and ‘up-to-date’ status was observed across all demographic characteristics. The disparity gaps persisted over time by gender, income, recent registrant and age. The rural/urban gap was removed. Physician’s recommendation tripled the likelihood of FOBT participation (prevalence rate ratio=3.23, CI= 3.22-3.24) and mitigated disparities. The CCC led to a temporary increase in level (8.2‰ person-month) in FOBT participation followed by a decline in trend and then a plateau. The increase in level was significant across all population sub-groups. Conclusions: We found that CRC screening has increased in Ontario across all subgroups of the population but remained suboptimal. Disparities in screening participation were identified. Proposed strategies to improve performance include interventions to increase the rate of physician’s recommendation at the practice level, tailored interventions to motivate under-users and public media campaigns.
323

A Generic Simulation Model to Improve Procedure Scheduling in Endoscopy Suites

Loach, Deborah 10 January 2011 (has links)
In 2008 Ontario implemented a screening program for colorectal cancer, which drew attention to the increasing demand for colonoscopies in the province. This trend and the forecasted demand of the new screening program created a need to increase capacity in hospital endoscopy suites. This thesis addresses this need by investigating throughput gains from scheduling according to physician specific procedure durations in endoscopy suites. This is accomplished through the development of a scheduler and a generic discrete event simulation. Case study results show that physician specific scheduling can increase throughput in the endoscopy suite while reducing undertime and only slightly increasing overtime. They further indicate the trade off between a 1:2 and 1:1 physician to room ratio, finding that while a 1:1 ratio increases throughput by 33% over a 1:2 ratio, physicians are 1.5 times more productive under a 1:2 ratio.
324

Utility Assessment of Health-related Quality of Life (HRQOL) in Colorectal Cancer Patients: A Mixed Methodology Study

Costa, Sarah E. 06 December 2011 (has links)
Background: Variation exists in quality of life (i.e., utility) estimates depending on the utility elicitation method utilized. Using the EQ-5D, VAS, and HUI-III, the aim of this thesis was to determine whether these measures adequately capture HRQOL in a CRC population and assess the relationship between utility estimates generated. Methods: A mixed methods study design was employed to collect health status scores and interview data from a sample of 50 CRC patients in Toronto, Ontario. Results: Mean utility scores between the EQ-5D and HUI-III were identical at 0.76 (95% CI), with an overall VAS score of 0.72 (95% CI). Conclusion: The fact that the EQ-5D and HUI-III resulted in identical mean utility scores provides assurance for future studies using these tools in CRC. However, many factors that CRC patients identify as important to their HRQOL are not captured by these instruments. These findings have implications for informing economic evaluations.
325

Insulin-like growth factor receptors in colorectal cancer.

Brierley, Gemma Victoria January 2008 (has links)
The IGF system is a crucial regulator of normal growth and development, however dysregulation of the system on multiple levels is associated with the incidence of a wide variety of malignancies including the breast, thyroid, lung, and colon, making the IGF system an important anti-cancer therapeutic target. Due to its role in mediating cellular proliferation, protection from apoptosis, and metastasis, traditional focus has been set on examining the role of the type 1 IGF receptor [IGF1R] in cancer. However there is mounting evidence to suggest the insulin receptor [IR] may also be involved in the potentiation and pathogenesis of cancers. The observation that IGF-II is overexpressed, compared to normal tissues, by cancers suggests signaling via target receptors by this ligand has important implications on cancer pathogenesis. Indeed, both the IGF1R and IR have been demonstrated to be up-regulated in a variety of malignancies. In regards to IR isoform, the IGF-II binding IR-A is preferentially expressed by a number of cancer cell types. Together with the observation that an autocrine proliferative loop exists between IGF-II and the IR-A in malignant thyrocytes and cultured breast cancer cells, suggests signaling via the IR-A may play a role in cancer cell growth and survival. However, very few studies on the IR-A have been conducted in cells co-expressing the IGF1R. This is mainly due to the difficulties associated with discrimination between signaling arising from IGF1R homodimers, IR-A homodimers, and IGF1R/IR-A hybrid receptors. It is not known how the IR-A interacts, and functions in conjunction with the other receptors of the IGF system to signal biologically relevant outcomes, especially in terms of anti-cancer therapeutics that aim to block and down-regulate the IGF1R. Current anti-cancer therapies targeting the IGF system have concentrated on blocking IGF signaling via the IGF1R, due mostly to the functional properties of the receptor, but also in part due to the metabolic consequences associated with blockade and inhibition of the IR. This individual targeting of the IGF1R potentially leaves a pathway by which IGF-II secreted by the tumour can circumvent current IGF1R based therapies. Consequently, this thesis investigated whether the IR-A could compensate for the targeted loss of the IGF1R and how the IR-A interacts with the IGF1R in cells co-expressing these two receptors. In addition, the individual ability of the IR isoforms to signal biological outcomes in response to IGF stimulation was assessed. The main experimental techniques used throughout this body of work included; assessment of protein expression and activation by Western blot, siRNA mediated gene silencing, and measures of cell proliferation, survival, and migration. The key areas of investigation included: 1. Investigation of the individual ability of the IR isoforms to signal biological outcomes in response to IGF stimulation 2. Identification of an appropriate cell line model in which to investigate the interactions between the IR-A and IGF1R 3. Optimisation of siRNA mediated knock-down of the IR-A and IGF1R in SW480 colorectal adenocarcinoma cells 4. Determination of the biological role of the IR-A in SW480 cells co-expressing the IGF1R The key findings from this work included: 1. The IR-A could not compensate for IGF1R depletion in SW480 cells 2. Dual silencing of the IR-A and IGF1R indicated signaling via the IGF1R was dominant to signaling via the IR-A in SW480 cells 3. Signaling via IR-A/IGF1R hybrid receptors may not be as potent as signaling via IGF1R homodimers 4. IGF-I at physiological concentrations can stimulate biological responses via both isoforms of the IR. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1337339 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2008
326

Repeat adherence to colorectal cancer screening utilising faecal occult blood testing : a community-based approach in a rural setting

Hughes, Karen Leigh January 2006 (has links)
In Australia, colorectal cancer (CRC) is the most common registrable cancer affecting both men and women, and the third most common cause of cancer deaths. Clinical data from randomised, controlled trials indicate that population-based screening utilising the faecal occult blood test (FOBT) can reduce mortality from this disease. However, high adherence rates with repeated testing are required to secure these outcomes. This study examines repeat adherence with FOBT screening in a rural community two years after a first screening round was conducted. Patients, aged 50 to 74 years, registered with four local general practices were mailed a FOBT kit with a letter of invitation from their general practitioner. Following the intervention, 119 telephone interviews were conducted with adherers and non-adherers to examine knowledge and attitudes related to screening. Compliance with screening was recorded and compared with first round-data. Participation in the screening program was modest. Of the 3,406 participants eligible for both screening rounds, 34.1% and 34.7% participated in rounds 1 and 2, respectively. A majority of participants (56.8%) did not adhere to either screening, a quarter (25.7%) participated in both rounds, and 17.5% participated in one of the two rounds. First-round adherence was the strongest predictor of second-round adherence (OR=16.29; 95% CI: 13.58, 19.53) with 75.2% of first-round adherers completing a FOBT in round 2. Females were also more likely to adhere in both rounds, although the difference between females and males decreased across rounds. Knowledge and attitudes differed between adherers and non-adherers and are discussed within the context of the major findings. Results from this trial indicate that achieving high levels of compliance in a national screening program will be challenging. Strategies to increase repeat adherence are suggested.
327

Insulin-like growth factor receptors in colorectal cancer.

Brierley, Gemma Victoria January 2008 (has links)
The IGF system is a crucial regulator of normal growth and development, however dysregulation of the system on multiple levels is associated with the incidence of a wide variety of malignancies including the breast, thyroid, lung, and colon, making the IGF system an important anti-cancer therapeutic target. Due to its role in mediating cellular proliferation, protection from apoptosis, and metastasis, traditional focus has been set on examining the role of the type 1 IGF receptor [IGF1R] in cancer. However there is mounting evidence to suggest the insulin receptor [IR] may also be involved in the potentiation and pathogenesis of cancers. The observation that IGF-II is overexpressed, compared to normal tissues, by cancers suggests signaling via target receptors by this ligand has important implications on cancer pathogenesis. Indeed, both the IGF1R and IR have been demonstrated to be up-regulated in a variety of malignancies. In regards to IR isoform, the IGF-II binding IR-A is preferentially expressed by a number of cancer cell types. Together with the observation that an autocrine proliferative loop exists between IGF-II and the IR-A in malignant thyrocytes and cultured breast cancer cells, suggests signaling via the IR-A may play a role in cancer cell growth and survival. However, very few studies on the IR-A have been conducted in cells co-expressing the IGF1R. This is mainly due to the difficulties associated with discrimination between signaling arising from IGF1R homodimers, IR-A homodimers, and IGF1R/IR-A hybrid receptors. It is not known how the IR-A interacts, and functions in conjunction with the other receptors of the IGF system to signal biologically relevant outcomes, especially in terms of anti-cancer therapeutics that aim to block and down-regulate the IGF1R. Current anti-cancer therapies targeting the IGF system have concentrated on blocking IGF signaling via the IGF1R, due mostly to the functional properties of the receptor, but also in part due to the metabolic consequences associated with blockade and inhibition of the IR. This individual targeting of the IGF1R potentially leaves a pathway by which IGF-II secreted by the tumour can circumvent current IGF1R based therapies. Consequently, this thesis investigated whether the IR-A could compensate for the targeted loss of the IGF1R and how the IR-A interacts with the IGF1R in cells co-expressing these two receptors. In addition, the individual ability of the IR isoforms to signal biological outcomes in response to IGF stimulation was assessed. The main experimental techniques used throughout this body of work included; assessment of protein expression and activation by Western blot, siRNA mediated gene silencing, and measures of cell proliferation, survival, and migration. The key areas of investigation included: 1. Investigation of the individual ability of the IR isoforms to signal biological outcomes in response to IGF stimulation 2. Identification of an appropriate cell line model in which to investigate the interactions between the IR-A and IGF1R 3. Optimisation of siRNA mediated knock-down of the IR-A and IGF1R in SW480 colorectal adenocarcinoma cells 4. Determination of the biological role of the IR-A in SW480 cells co-expressing the IGF1R The key findings from this work included: 1. The IR-A could not compensate for IGF1R depletion in SW480 cells 2. Dual silencing of the IR-A and IGF1R indicated signaling via the IGF1R was dominant to signaling via the IR-A in SW480 cells 3. Signaling via IR-A/IGF1R hybrid receptors may not be as potent as signaling via IGF1R homodimers 4. IGF-I at physiological concentrations can stimulate biological responses via both isoforms of the IR. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1337339 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2008
328

Insulin-like growth factor receptors in colorectal cancer.

Brierley, Gemma Victoria January 2008 (has links)
The IGF system is a crucial regulator of normal growth and development, however dysregulation of the system on multiple levels is associated with the incidence of a wide variety of malignancies including the breast, thyroid, lung, and colon, making the IGF system an important anti-cancer therapeutic target. Due to its role in mediating cellular proliferation, protection from apoptosis, and metastasis, traditional focus has been set on examining the role of the type 1 IGF receptor [IGF1R] in cancer. However there is mounting evidence to suggest the insulin receptor [IR] may also be involved in the potentiation and pathogenesis of cancers. The observation that IGF-II is overexpressed, compared to normal tissues, by cancers suggests signaling via target receptors by this ligand has important implications on cancer pathogenesis. Indeed, both the IGF1R and IR have been demonstrated to be up-regulated in a variety of malignancies. In regards to IR isoform, the IGF-II binding IR-A is preferentially expressed by a number of cancer cell types. Together with the observation that an autocrine proliferative loop exists between IGF-II and the IR-A in malignant thyrocytes and cultured breast cancer cells, suggests signaling via the IR-A may play a role in cancer cell growth and survival. However, very few studies on the IR-A have been conducted in cells co-expressing the IGF1R. This is mainly due to the difficulties associated with discrimination between signaling arising from IGF1R homodimers, IR-A homodimers, and IGF1R/IR-A hybrid receptors. It is not known how the IR-A interacts, and functions in conjunction with the other receptors of the IGF system to signal biologically relevant outcomes, especially in terms of anti-cancer therapeutics that aim to block and down-regulate the IGF1R. Current anti-cancer therapies targeting the IGF system have concentrated on blocking IGF signaling via the IGF1R, due mostly to the functional properties of the receptor, but also in part due to the metabolic consequences associated with blockade and inhibition of the IR. This individual targeting of the IGF1R potentially leaves a pathway by which IGF-II secreted by the tumour can circumvent current IGF1R based therapies. Consequently, this thesis investigated whether the IR-A could compensate for the targeted loss of the IGF1R and how the IR-A interacts with the IGF1R in cells co-expressing these two receptors. In addition, the individual ability of the IR isoforms to signal biological outcomes in response to IGF stimulation was assessed. The main experimental techniques used throughout this body of work included; assessment of protein expression and activation by Western blot, siRNA mediated gene silencing, and measures of cell proliferation, survival, and migration. The key areas of investigation included: 1. Investigation of the individual ability of the IR isoforms to signal biological outcomes in response to IGF stimulation 2. Identification of an appropriate cell line model in which to investigate the interactions between the IR-A and IGF1R 3. Optimisation of siRNA mediated knock-down of the IR-A and IGF1R in SW480 colorectal adenocarcinoma cells 4. Determination of the biological role of the IR-A in SW480 cells co-expressing the IGF1R The key findings from this work included: 1. The IR-A could not compensate for IGF1R depletion in SW480 cells 2. Dual silencing of the IR-A and IGF1R indicated signaling via the IGF1R was dominant to signaling via the IR-A in SW480 cells 3. Signaling via IR-A/IGF1R hybrid receptors may not be as potent as signaling via IGF1R homodimers 4. IGF-I at physiological concentrations can stimulate biological responses via both isoforms of the IR. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1337339 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2008
329

Insulin-like growth factor receptors in colorectal cancer.

Brierley, Gemma Victoria January 2008 (has links)
The IGF system is a crucial regulator of normal growth and development, however dysregulation of the system on multiple levels is associated with the incidence of a wide variety of malignancies including the breast, thyroid, lung, and colon, making the IGF system an important anti-cancer therapeutic target. Due to its role in mediating cellular proliferation, protection from apoptosis, and metastasis, traditional focus has been set on examining the role of the type 1 IGF receptor [IGF1R] in cancer. However there is mounting evidence to suggest the insulin receptor [IR] may also be involved in the potentiation and pathogenesis of cancers. The observation that IGF-II is overexpressed, compared to normal tissues, by cancers suggests signaling via target receptors by this ligand has important implications on cancer pathogenesis. Indeed, both the IGF1R and IR have been demonstrated to be up-regulated in a variety of malignancies. In regards to IR isoform, the IGF-II binding IR-A is preferentially expressed by a number of cancer cell types. Together with the observation that an autocrine proliferative loop exists between IGF-II and the IR-A in malignant thyrocytes and cultured breast cancer cells, suggests signaling via the IR-A may play a role in cancer cell growth and survival. However, very few studies on the IR-A have been conducted in cells co-expressing the IGF1R. This is mainly due to the difficulties associated with discrimination between signaling arising from IGF1R homodimers, IR-A homodimers, and IGF1R/IR-A hybrid receptors. It is not known how the IR-A interacts, and functions in conjunction with the other receptors of the IGF system to signal biologically relevant outcomes, especially in terms of anti-cancer therapeutics that aim to block and down-regulate the IGF1R. Current anti-cancer therapies targeting the IGF system have concentrated on blocking IGF signaling via the IGF1R, due mostly to the functional properties of the receptor, but also in part due to the metabolic consequences associated with blockade and inhibition of the IR. This individual targeting of the IGF1R potentially leaves a pathway by which IGF-II secreted by the tumour can circumvent current IGF1R based therapies. Consequently, this thesis investigated whether the IR-A could compensate for the targeted loss of the IGF1R and how the IR-A interacts with the IGF1R in cells co-expressing these two receptors. In addition, the individual ability of the IR isoforms to signal biological outcomes in response to IGF stimulation was assessed. The main experimental techniques used throughout this body of work included; assessment of protein expression and activation by Western blot, siRNA mediated gene silencing, and measures of cell proliferation, survival, and migration. The key areas of investigation included: 1. Investigation of the individual ability of the IR isoforms to signal biological outcomes in response to IGF stimulation 2. Identification of an appropriate cell line model in which to investigate the interactions between the IR-A and IGF1R 3. Optimisation of siRNA mediated knock-down of the IR-A and IGF1R in SW480 colorectal adenocarcinoma cells 4. Determination of the biological role of the IR-A in SW480 cells co-expressing the IGF1R The key findings from this work included: 1. The IR-A could not compensate for IGF1R depletion in SW480 cells 2. Dual silencing of the IR-A and IGF1R indicated signaling via the IGF1R was dominant to signaling via the IR-A in SW480 cells 3. Signaling via IR-A/IGF1R hybrid receptors may not be as potent as signaling via IGF1R homodimers 4. IGF-I at physiological concentrations can stimulate biological responses via both isoforms of the IR. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1337339 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2008
330

Insulin-like growth factor receptors in colorectal cancer.

Brierley, Gemma Victoria January 2008 (has links)
The IGF system is a crucial regulator of normal growth and development, however dysregulation of the system on multiple levels is associated with the incidence of a wide variety of malignancies including the breast, thyroid, lung, and colon, making the IGF system an important anti-cancer therapeutic target. Due to its role in mediating cellular proliferation, protection from apoptosis, and metastasis, traditional focus has been set on examining the role of the type 1 IGF receptor [IGF1R] in cancer. However there is mounting evidence to suggest the insulin receptor [IR] may also be involved in the potentiation and pathogenesis of cancers. The observation that IGF-II is overexpressed, compared to normal tissues, by cancers suggests signaling via target receptors by this ligand has important implications on cancer pathogenesis. Indeed, both the IGF1R and IR have been demonstrated to be up-regulated in a variety of malignancies. In regards to IR isoform, the IGF-II binding IR-A is preferentially expressed by a number of cancer cell types. Together with the observation that an autocrine proliferative loop exists between IGF-II and the IR-A in malignant thyrocytes and cultured breast cancer cells, suggests signaling via the IR-A may play a role in cancer cell growth and survival. However, very few studies on the IR-A have been conducted in cells co-expressing the IGF1R. This is mainly due to the difficulties associated with discrimination between signaling arising from IGF1R homodimers, IR-A homodimers, and IGF1R/IR-A hybrid receptors. It is not known how the IR-A interacts, and functions in conjunction with the other receptors of the IGF system to signal biologically relevant outcomes, especially in terms of anti-cancer therapeutics that aim to block and down-regulate the IGF1R. Current anti-cancer therapies targeting the IGF system have concentrated on blocking IGF signaling via the IGF1R, due mostly to the functional properties of the receptor, but also in part due to the metabolic consequences associated with blockade and inhibition of the IR. This individual targeting of the IGF1R potentially leaves a pathway by which IGF-II secreted by the tumour can circumvent current IGF1R based therapies. Consequently, this thesis investigated whether the IR-A could compensate for the targeted loss of the IGF1R and how the IR-A interacts with the IGF1R in cells co-expressing these two receptors. In addition, the individual ability of the IR isoforms to signal biological outcomes in response to IGF stimulation was assessed. The main experimental techniques used throughout this body of work included; assessment of protein expression and activation by Western blot, siRNA mediated gene silencing, and measures of cell proliferation, survival, and migration. The key areas of investigation included: 1. Investigation of the individual ability of the IR isoforms to signal biological outcomes in response to IGF stimulation 2. Identification of an appropriate cell line model in which to investigate the interactions between the IR-A and IGF1R 3. Optimisation of siRNA mediated knock-down of the IR-A and IGF1R in SW480 colorectal adenocarcinoma cells 4. Determination of the biological role of the IR-A in SW480 cells co-expressing the IGF1R The key findings from this work included: 1. The IR-A could not compensate for IGF1R depletion in SW480 cells 2. Dual silencing of the IR-A and IGF1R indicated signaling via the IGF1R was dominant to signaling via the IR-A in SW480 cells 3. Signaling via IR-A/IGF1R hybrid receptors may not be as potent as signaling via IGF1R homodimers 4. IGF-I at physiological concentrations can stimulate biological responses via both isoforms of the IR. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1337339 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2008

Page generated in 0.0678 seconds