• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role Of Solid Phase Movement And Remelting On Macrosegregation And Microstructure Formation In Solidificaiton Processing

Kumar, Arvind 06 1900 (has links)
Melt convection and solid phase movement play an important role in solidification processes, which significantly influence the formation of grain structures and solute segregations. In general, the melt convection and grain movement are a result of buoyancy forces. The densities within melt are different due to the variation of temperature and concentration, leading to thermally and solutally driven melt convection. Similarly, the density differences between the grains and the bulk melt cause the grain movement, leading to solid sedimentation or grain floating, as the case may be. Free, unattached solid grains are produced by partial remelting and fragmentation of dendrites, by mechanical disturbances such as stirring or vibration and by heterogeneous nucleation of grains in solidification of grain-refined alloys. In this way, movement of solid crystals during solidification can be ascertained in the following two cases. In the first case, during columnar solidification of non-grain-refined alloys, solid movement is possible in the form of dendrite fragments detached from the columnar stalks by the process of remelting and fragmentation. Movement of grains during columnar solidification gives rise to altogether different microstructure from columnar to equiaxed. In the second case, during equiaxed solidification of grain-refined alloys, the movement of solid crystals is possible in the form of equiaxed dendrite crystals nucleated due to presence of grain refiners. The rate and manner by which the free solids settle (or float) will influence macrosegregation in metal castings. Control of the solidification process is possible through an understanding of the solid movement and its effect on macrosegregation and microstructure. With this viewpoint, the overall objective of the present thesis is to study, experimentally and numerically, the phenomenon of solid phase movement during solidification. Through this study, deeper insights of the role of solid phase movement in solidification are developed which can be used for possible control of quality in castings. Both columnar and equiaxed solidification are considered. Models for transport phenomena associated with columnar solidification with solid phase movement are rarely found in the literature, because of inherent difficulty associated with consideration of microscopic features such as remelting and fragmentation. To tackle this problem, solidification modules for remelting and fragmentation are developed first, followed by integration of these molecules in a macroscopic solidification model. A Rayleigh number based fragmentation criterion is developed for detachment of dendrite fragments from the developing mushy zone, which determines the conditions favorable for fragmentation of dendrites. The criterion developed is a function of net concentration difference, liquid fraction, permeability, growth rate of mushy layer, and thermophysical properties of the material. The effect of various solidification parameters on fragmentation is highlighted. The integrated continuum model developed is applied to stimulate the solidification of aqua-ammonia system in a side-cooled rectangular cavity. The numerical results are in good qualitative agreement with those of experiments reported in literature. A gentle ramp of the mushy zone due to settling of solid crystals, as also noticed in experimental literature, is observed towards the bottom of the cavity. The influence of various modeling parameters on solid phase movement and resulting macrosegregation is investigated through a parametric study. Movement of grains during columnar solidification gives rise to altogether different microstructure and sometimes may initiate a morphological transition of the microstructure from columnar to equiaxed if the number and size of equiaxed grains ahead of the columnar front become sufficient to arrest the columnar growth. The generalised model developed, considering solid phase movement during columnar solidification is used to predict columnar-to-equiaxed transition (CET) based on a prescribed cooling rate criterion. It is found that presence of convection significantly affects the solidification behaviour. Moreover, the movement of dendrite fragments and their accumulation at the columnar front further trigger the occurrence of CET. Cooling configuration, too significantly affects the nature of CET. In unidirectional solidification cases, the locations of CET are found to be in a plane parallel to the chill face. However, for the case of the non-unidirectional solidification (as in side-cooled cavity), the locations of CET need not be in a plane parallel to the chill face. In contrast to fixed columnar solidification, equiaxed solidification is poorly understood; in particular, the phenomena associated with solid crystal movement. Movement of unattached solid crystals, formed due to heterogeneous nucleation on grain-refiners, is induced by the convective currents as well as by buoyancy effects, causing the solid to sediment or to float, depending on density of solid compared to that of the bulk melt. While moving in the bulk melt these crystals can also remelt or grow. A series of casting experiments with AI-based alloys are performed to investigate the role and influence of movement of solid crystals on macrosegregation and microstructure evolution during equiaxed solidification. Controlled experiments are designed for studying, separately, settling and floatation of equiaxed crystals for different cooling conditions and configurations. Further, these experiments are carried out in convective and non-convective cases to understand the effect of convection on solid phase movement. Temperature measurements are performed at various locations in the mould during the experiments. After the cavity is solidified, microstructural and chemical analyses of the experimental samples are carried out, several notable features are observed in temperature histories, macrosegregation pattern, and microstructures due to settling/flotation phenomenon of solid crystals. It is found that the flow behavior of solid grains has a profound influence on the progress of solidification (in terms of grain size distribution and fraction eutectic) and macrosegregation distribution. In some cases, the induced flow due to solid phase movement can cause a flow reversal. The observations and quantitative data obtained from experiments, with the help of detailed solidification conditions provided, can be used for future validations of models for equiaxed solidification. Subsequently, numerical studies are carried out, using a modified version of the macroscopic model developed for columnar solidification with motion of solid crystals, to predict the transport phenomena during equiaxed solidification. The model is applied to simulate the solidification processes corresponding to each of the experimental cases performed in this study. For a better understanding of the phenomenon of movement of solid crystals, the following two special cases of solidification are also presented: 1) without movement of solid crystals and 2) movement of solid crystals without any relative velocity between solid and liquid phases. The numerical predictions showing nature of flow field and progress of solidification are substantiated by the experimental data for the thermal analysis, qualitative microstructural Images and quantitative microstructural analysis. It is concluded, with the help of various experiments and simulations, that movement of solid crystals influences the casting quality appreciably, in terms of macrosegregation and microstructures. It is expected that the improved understanding of the role and influence of solid phase movement during solidification processes (both columnar and equiaxed) obtained through this thesis will be useful for possible control of quality of as-cast products.
2

Computational and Experimental Study of the Microstructure Evolution of Inconel 625 Processed by Laser Powder Bed Fusion

Mohammadpour, Pardis January 2023 (has links)
This study aims to improve the Additive Manufacturing (AM) design space for the popular multi-component Ni alloy Inconel 625 (IN625) thorough investigating the microstructural evolution, namely the solidification microstructure and the solid-state phase transformations during the Laser Powder Bed Fusion (LPBF) process. Highly non-equilibrium solidification and the complex reheating conditions during the LPBF process result in the formation of various types of solidification microstructures and grain morphologies which consequently lead to a wide range of mechanical properties. Understanding the melt’s thermal conditions, alloy chemistry, and thermodynamics during the rapid solidification and solid-state phase transformation in AM process will help to control material properties and even produce a material with specific microstructural features suited to a given application. This research helps to better understand the process-microstructure-property relationships of LPBF IN625. First, a set of simple but effective analytical solidification models were employed to evaluate their ability to predict the solidification microstructure in AM applications. As a case study, Solidification Microstructure Selection (SMS) maps were created to predict the solidification growth mode and grain morphology of a ternary Al-10Si-0.5Mg alloy manufactured by the LPBF process. The resulting SMS maps were validated against the experimentally obtained LPBF microstructure available in the literature for this alloy. The challenges, limitations, and potential of the SMS map method to predict the microstructural features in AM were comprehensively discussed. Second, The SMS map method was implemented to predict the solidification microstructure and grain morphology in an LPBF-built multi-component IN625 alloy. A single-track LPBF experiment was performed utilizing the EOSINT M280 machine to evaluate the SMS map predictions. The resulting microstructure was characterized both qualitatively and quantitatively in terms of the solidification microstructure, grain morphology, and Primary Dendrite Arm Spacing (PDAS). Comparing the experimentally obtained solidification microstructure to the SMS map prediction, it was found that the solidification mode and grain morphology were correctly predicted by the SMS maps. Although the formation of precipitates was predicted using the CALculation of PHAse Diagrams (CALPHAD) approach, it was not anticipated from the analytical solution results. Third, to further investigate the microsegregation and precipitation in IN625, Scanning Transmission Electron Microscopy (STEM) using Energy-Dispersive X-ray Spectroscopy (EDS), High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM), Scheil-Gulliver (with solute trapping) model, and DIffusion-Controlled TRAnsformations (DICTRA) method were employed. It was found that the microstructural morphology mainly consists of the Nickel-Chromium (gamma-FCC) dendrites and a small volume fraction of precipitates embedded into the interdendritic regions. The precipitates predicted with the computational method were compared with the precipitates identified via HAADF-STEM analysis inside the interdendritic region. The level of elemental microsegregation was overestimated in DICTRA simulations compared to the STEM-EDS results; however, a good agreement was observed between the Scheil and STEM-EDS microsegregation estimations. Finally, the spatial variations in mechanical properties and the underlying microstructural heterogeneity of a multi-layer as-built LPBF part were investigated to complete the process-structure-properties relationships loop of LPBF IN625. Towards this end, numerical thermal simulation, electron microscopy, nano hardness test, and a CALPHAD approach were utilized to investigate the mechanical and microstructural heterogeneity in terms of grain size and morphology, PDAS, microsegregation pattern, precipitation, and hardness along the build direction. It was found that the as-built microstructure contained mostly columnar (Nickel–Chromium) dendrites were growing epitaxially from the substrate along the build direction. The hardness was found to be minimum in the middle and maximum in the bottom layers of the build’s height. Smaller melt pools, grains, and PDAS and higher thermal gradients and cooling rates were observed in the bottom layers compared to the top layers. Microsegregation patterns in multiple layers were also simulated using DICTRA, and the results were compared with the STEM-EDS results. The mechanism of the formation of precipitates in different regions along the build direction and the precipitates’ corresponding effects on the mechanical properties were also discussed. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.0841 seconds