• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 235
  • 209
  • 47
  • 37
  • 19
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • Tagged with
  • 670
  • 284
  • 125
  • 125
  • 102
  • 100
  • 87
  • 73
  • 72
  • 71
  • 61
  • 56
  • 50
  • 46
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Finding Ariadne's Thread: A School of Dance for 'La Tarantella'

Khalsa, Neelum 03 December 2008 (has links)
By designing a school for 'La Tarantella', I sought to explore how architecture could meaningfully surround the circular movements of the dancers while imagining how elements of the building could also express energy, rhythm, balance, and harmony. The body/column analogy, the question of cultural and architectural origins, and the myth of the Ancient Cretan labyrinth led me to the creation of a modern labyrinth. / Master of Architecture
42

Uni-axial behaviour of concrete-filled-steel-tubular columns with external confinement

Dong, Chunxiao, 董春宵 January 2013 (has links)
This thesis studies the uni-axial behaviour of circular double-skinned concrete-filled-steel-tubular (CFST) columns with external confinement in form of external steel rings. Particular attention is paid to the experimental behaviour of double-skinned CFST columns and theoretical model for evaluating the loadcarrying capacity of un- and ring-confined double-skinned CFST columns. Experimental studies on circular double-skinned CFST columns with various spacing of confinement, concrete strength and hollow ratio were conducted and discussed comprehensively. The mechanical properties of double-skinned CFST columns such as elastic stiffness, elastic strength, load-carrying capacity and ductility are presented. From the result, it is found that the elastic stiffness, elastic strength, load-carrying capacity and ductility are enhanced by installing the external steel rings to the outer tube as external confinement. To verify the effectiveness of external steel rings, the Poisson’s ratios of the double-skinned CFST columns are listed and found to be similar to that of concrete so that a perfect bonding is maintained. To emphasis the excellent performance of double-skinned CFST columns with external rings under uni-axial compression, the load-carrying capacity, elastic strength and elastic stiffness are compared to those of single-skinned CFST columns and reinforced concrete columns. To fill up the gap that no design model is provided in Eurocode 4 (EC4) for confined double-skinned CFST columns, a theoretical model based on the force equilibrium condition is proposed for evaluating the load-carrying capacity of both un- and ring-confined double-skinned CFST columns. The model takes into account the composite action between the steel tubes and core concrete. To verify the proposed model, numerous test results obtained by the author and other researchers are used for comparing the theoretical results. According to the above theoretical model above, a parametric study is carried out to investigate the effect of various geometry and material properties on the load-carrying capacity of double-skinned CFST columns. The confining pressure is expressed in terms of geometry and material factors. A simplified design formula is proposed to facilitate the preliminary design of double-skinned CFST columns with and without external confinement. / published_or_final_version / Civil Engineering / Master / Master of Philosophy
43

Axial Capacity of Concrete Filled Stainless Steel Columns

Lam, Dennis, Wong, K.K.Y. January 2005 (has links)
No / Concrete filled steel columns have been used widely in structures throughout the world in recent years especially in Australia and the Far East. This increase in use is due to the significant advantages that concrete filled steel columns offer in comparison to more traditional construction methods. Composite columns consist of a combination of concrete and steel and make use of these constituent material's best properties. The use of composite columns can result in significant savings in column size, which ultimately can lead to significant economic savings. This reduction in column size can provide substantial benefits where floor space is at a premium such as in car parks and office blocks. The use of stainless steel column filled with concrete is new and innovative, not only provides the advantage mentioned above, but also durability associated with the stainless steel material. This paper concentrates on the axial capacity of the concrete filled stainless steel columns. A series of tests was performed to consider the behaviour of short composite stainless steel columns under axial compressive loading, covering austenitic stainless steels square hollow sections filled with normal and high strength concrete. Comparisons between Eurocode 4, ACI-318 and the Australian Standards with the findings of this research were made and comment.
44

Axial capacity of concrete filled stainless steel tubular circular columns

Lam, Dennis, Roach, C. January 2006 (has links)
No
45

Modelling the Confinement Effect of Composite Concrete-Filled Elliptical Steel Columns

Dai, Xianghe, Lam, Dennis January 2009 (has links)
No
46

Finite Element Modelling Of Slender Concrete Filled Elliptical Steel Columns

Lam, Dennis, Dai, Xianghe, Jamaluddin, N., Ye, J. January 2011 (has links)
No
47

Axial capacity of concrete filled stainless steel circular columns

Lam, Dennis, Roach, C. January 2006 (has links)
No description available.
48

Finite Element Modelling of Beam to Concrete Filled Elliptical Steel Column Connections

Lam, Dennis, Dai, Xianghe January 2012 (has links)
No
49

Research in composite concrete filled columns

Lam, Dennis January 2011 (has links)
Composite concrete filled steel tube columns are increasingly used for high-rise building structures, owing to their excellent structural performance such as superior load-bearing capacity, high ductility, good energy dissipation and fire behaviour which arises from the combination of the two different materials in the structure. Composite structures exploit the characteristics of steel and concrete; steel with its high tensile strength and ductility and concrete with its high compressive strength and stiffness. In general, concrete filled composite columns with circular hollow sections (CHS) have the advantage over columns with other section shapes due to the circular cross sections providing a uniform confinement to the concrete core.
50

Microfluidic Columns with Nanotechnology-Enabled Stationary Phases for Gas Chromatography

Shakeel, Hamza 12 March 2015 (has links)
Advances in micro-electro-mechanical-systems (MEMS) along with nanotechnology based methods have enabled the miniaturization of analytical chemistry instrumentation. The broader aim is to provide a portable, low-cost, and low-power platform for the real-time detection and identification of organic compounds in a wide variety of applications. A benchtop gas chromatography (GC) system is considered a gold standard for chemical analysis by analytical chemists. Similarly, miniaturization of key GC components (preconcentrator, separation column, detector, and pumps) using micro- and nanotechnology based techniques is an on-going research field. This dissertation specifically deals with the design, fabrication, coating, and chromatographic testing of microfabricated separation columns for GC. This work can be broadly categorized into three research areas: design and development of new column designs, introduction of new stationary phases and the development of novel fabrication methodologies for integrating functionalized thin-film into microchannels for chromatographic separations. As a part of this research, two high performance new micro column designs namely width-modulated and high-density semi-packed columns are introduced for the first time. Similarly, two new types of functionalized stationary phases are also demonstrated i.e. a highly stable and homogenous silica nanoparticles coating deposited using a layer-by-layer self-assembly scheme and a highly conformal functionalized thin aluminum oxide film deposited using atomic layer deposition. Moreover, novel thin-film patterning methods using different microfabrication technologies are also demonstrated for high-aspect ratio multicapillary and semi-packed columns. / Ph. D.

Page generated in 0.033 seconds