• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Otimização on-line de uma debutanização

Sgarbosa, Marcelo 18 June 1993 (has links)
Orientador: Mario de Jesus Mendes / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-07-19T04:48:02Z (GMT). No. of bitstreams: 1 Sgarbosa_Marcelo_M.pdf: 2620478 bytes, checksum: 8e9cc0943a79a8928187339af4f97923 (MD5) Previous issue date: 1993 / Resumo: O presente trabalho tem por objetivo a otimização on-line de uma coluna debutanizadora da unidade de craqueamento catalítico fluido de uma refinaria de petróleo. É utilizado para isto o algoritmo de otimização de Box e o modelo de Smith-Brinkley como simulador da coluna, sendo maximizada uma função objetivo do tipo: F.O. = (Valor. Produtos) ¿ (Custo carga) ¿ (Custo Utilidades), estando a coluna sujeita à restrições operacionais, tanto do equipamento físico, no que diz respeito às capacidades de vazão, como em relação às especificações dos produtos obtidos. A principal especificação de produto a ser atendia na coluna é a temperatura correspondente a 95% em volume evaporados do produto de topo, obtida em teste realizado experimentalmente com amostra do produto. Esta temperatura, definida como intemperismo, tem o seu valor máximo fixado em '2 GRAUS¿C. Estudou-se alguns casos de perturbação na operação da coluna, como a variação de vazão e a variação de carga, realizando-se a otimização da mesma para três composições de cargas diferentes. Tanto no caso de variação de vazão como nos três casos de variação de composição de carga, para os preços dos produtos e utilidades tomados, o ponto ótimo operacional se situou na intersecção do valor do intemperismo com o valor mínimo da razão de refluxo / Abstract: The aim of this work is the on-line optimization of the debutanizer column of a Fluid Catalytic Cracking Unit from a Petroleum refinery. The algorithm for the on-line optimization of a debutanizer column uses the method of Box in connection with the Smith-Brinkley model for the debutanizer. The objective function: (O.B.) = Products Value ¿ Feed Costs ¿ Utility Cost, was maximized, subjected to operational constraints that must be respected. These constraints refer to the hydrodynamic capacity of the column and the specifications of the products. The most important specification of the products of the debutanizer is the 95% volume Boiling Point of the headproduct (Liquefied Petroleum Gas ¿ LPG), which is the results of a experimental test with a sample of the product. Its maximum value is fixed in Brazilian territory in '2 DEGREES¿C. Some cases of disturbances are studied in the column as the variation of feed flow and the variation of feed type. The results obtained show that in both cases the optimum operational point lies on the intersection of the 95% Boiling Point of LPG and the minimum operational reflux ratio / Mestrado / Mestre em Engenharia Química
2

Aplicação industrial de re-identificação de modelos de MPC em malha fechada. / Industrial application of closed-loop re-identification of MPC models.

Pitta, Renato Neves 26 January 2012 (has links)
A identificação de modelos é usualmente a tarefa mais significativa e demorada no trabalho de implementação e manutenção de sistemas de controle que usam Controle Preditivo baseado em Modelos (MPC) tendo em vista a complexidade da tarefa e a importância que o modelo possui para um bom desempenho do controlador. Após a implementação, o controlador tende a permanecer com o modelo original mesmo que mudanças de processo tenham ocorrido levando a uma degradação das ações do controlador. Este trabalho apresenta uma aplicação industrial de re-identificação em malha fechada. A metodologia de excitação da planta utilizada foi apresentada em Sotomayor et al. (2009). Tal técnica permite obter o comportamento das variáveis de processo sem desligar o MPC e sem modificar sua estrutura, aumentando assim, o automatismo e a segurança do procedimento de re-identificação. O sistema re-identificado foi uma coluna debutanizadora de uma refinaria brasileira sendo que os modelos fazem parte do controle preditivo multivariável dessa coluna de destilação. A metodologia foi aplicada com sucesso podendo-se obter os seis novos modelos para atualizar o controlador em questão, o que resultou em uma melhoria de seu desempenho. / Model identification is usually the most significant and time-consuming task of implementing and maintaining control systems based on models (MPC) concerning the complexity of the task and the importance of the model for a good performance of the controller. After being implemented the MPC tends to remain with the original model even after process changes have occurred, leading to a degradation of the controller actions. The present work shows an industrial application of closed-loop re-identification. The plant excitation methodology used here was presented in Sotomayor et al. (2009). Such technique allows for obtaining the behavior of the process variables with the MPC still working and without modifying the MPC structure, increasing automation and safety of the re-identification procedure. The system re-identified was a debutanizer column of a Brazilian refinery being the models part of the multivariable predictive control of this distillation column. The methodology was applied with reasonable success managing to obtain 6 new models to update this MPC, and resulting in improved control performance.
3

Aplicação industrial de re-identificação de modelos de MPC em malha fechada. / Industrial application of closed-loop re-identification of MPC models.

Renato Neves Pitta 26 January 2012 (has links)
A identificação de modelos é usualmente a tarefa mais significativa e demorada no trabalho de implementação e manutenção de sistemas de controle que usam Controle Preditivo baseado em Modelos (MPC) tendo em vista a complexidade da tarefa e a importância que o modelo possui para um bom desempenho do controlador. Após a implementação, o controlador tende a permanecer com o modelo original mesmo que mudanças de processo tenham ocorrido levando a uma degradação das ações do controlador. Este trabalho apresenta uma aplicação industrial de re-identificação em malha fechada. A metodologia de excitação da planta utilizada foi apresentada em Sotomayor et al. (2009). Tal técnica permite obter o comportamento das variáveis de processo sem desligar o MPC e sem modificar sua estrutura, aumentando assim, o automatismo e a segurança do procedimento de re-identificação. O sistema re-identificado foi uma coluna debutanizadora de uma refinaria brasileira sendo que os modelos fazem parte do controle preditivo multivariável dessa coluna de destilação. A metodologia foi aplicada com sucesso podendo-se obter os seis novos modelos para atualizar o controlador em questão, o que resultou em uma melhoria de seu desempenho. / Model identification is usually the most significant and time-consuming task of implementing and maintaining control systems based on models (MPC) concerning the complexity of the task and the importance of the model for a good performance of the controller. After being implemented the MPC tends to remain with the original model even after process changes have occurred, leading to a degradation of the controller actions. The present work shows an industrial application of closed-loop re-identification. The plant excitation methodology used here was presented in Sotomayor et al. (2009). Such technique allows for obtaining the behavior of the process variables with the MPC still working and without modifying the MPC structure, increasing automation and safety of the re-identification procedure. The system re-identified was a debutanizer column of a Brazilian refinery being the models part of the multivariable predictive control of this distillation column. The methodology was applied with reasonable success managing to obtain 6 new models to update this MPC, and resulting in improved control performance.
4

T?cnicas de intelig?ncia artificial para a gera??o din?mica de set points para uma coluna de destila??o

Ara?jo J?nior, Jos? Medeiros de 23 November 2007 (has links)
Made available in DSpace on 2014-12-17T14:54:59Z (GMT). No. of bitstreams: 1 JoseMAJ.pdf: 711051 bytes, checksum: 6bfbf1b93a8a49314295062e59672543 (MD5) Previous issue date: 2007-11-23 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Artificial Intelligence techniques are applied to improve performance of a simulated oil distillation system. The chosen system was a debutanizer column. At this process, the feed, which comes to the column, is segmented by heating. The lightest components become steams, by forming the LPG (Liquefied Petroleum Gas). The others components, C5+, continue liquid. In the composition of the LPG, ideally, we have only propane and butanes, but, in practice, there are contaminants, for example, pentanes. The objective of this work is to control pentane amount in LPG, by means of intelligent set points (SP s) determination for PID controllers that are present in original instrumentation (regulatory control) of the column. A fuzzy system will be responsible for adjusting the SP's, driven by the comparison between the molar fraction of the pentane present in the output of the plant (LPG) and the desired amount. However, the molar fraction of pentane is difficult to measure on-line, due to constraints such as: long intervals of measurement, high reliability and low cost. Therefore, an inference system was used, based on a multilayer neural network, to infer the pentane molar fraction through secondary variables of the column. Finally, the results shown that the proposed control system were able to control the value of pentane molar fraction under different operational situations / No presente trabalho, aplicamos t?cnicas de intelig?ncia artificial em um sistema simulado de destila??o de petr?leo, mais especificamente em uma coluna debutanizadora. Nesse processo, o produto que chega ? coluna, conhecido como LGN, ? fracionado por meio de aquecimento. Os componentes mais leves s?o transformados em vapor, que v?o constituir o GLP (G?s Liquefeito de Petr?leo), enquanto as fra??es mais pesadas continuam l?quidas, sendo, comumente, chamadas de C5+. Na composi??o do GLP, idealmente, temos apenas propanos e butanos, por?m, na pr?tica, temos a presen?a de contaminantes, como, por exemplo, pentanos (ipentanos e n-pentanos). O objetivo do trabalho ? regular ? quantidade de pentano presente no GLP, por meio da determina??o inteligente dos sets points (SP) de controladores presentes na instrumenta??o original da coluna. Para isso ? utilizado um sistema fuzzy, que ser? respons?vel por ajustar os valores desses SP s, a partir da compara??o entre a fra??o molar do pentano na sa?da da planta (GLP) e a quantidade desejada. Optou-se por controlar apenas a fra??o molar de i-pentano, por esta ser, normalmente, maior que a fra??o molar do n-pentano, e ainda, devido ao fato de que ambas apresentam din?micas extremamente semelhantes em fun??o das condi??es de opera??o da coluna. Por?m, a fra??o molar de pentano, seja do i-pentano ou n-pentano, ? de dif?cil medi??o on-line devido a limita??es, como: longos intervalos de medi??o, pouca confiabilidade e alto custo. Por essa raz?o, foi utilizado um sistema de infer?ncia, constru?do a partir de uma rede neural de m?ltiplas camadas para inferir o percentual de i-pentano a partir de vari?veis secund?rias da coluna. Os resultados obtidos mostram que o sistema fuzzy conseguiu controlar o valor da fra??o molar do i-pentano para diversas situa??es, mostrando ser um sistema de controle avan?ado vi?vel e com um n?vel satisfat?rio de confiabilidade

Page generated in 0.066 seconds