Spelling suggestions: "subject:"combinações (matematica)"" "subject:"combinações (matematical)""
1 |
Zeros de combinações lineares de polinômiosMello, Mirela Vanina de [UNESP] 20 July 2012 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:27Z (GMT). No. of bitstreams: 0
Previous issue date: 2012-07-20Bitstream added on 2014-06-13T20:00:38Z : No. of bitstreams: 1
mello_mv_dr_sjrp_parcial.pdf: 191324 bytes, checksum: 834d46b5c37971622ceb90534e435e2c (MD5) Bitstreams deleted on 2014-08-22T14:57:09Z: mello_mv_dr_sjrp_parcial.pdf,Bitstream added on 2014-08-22T15:02:10Z : No. of bitstreams: 1
000697077.pdf: 803410 bytes, checksum: da262ae1b32f853d9d5b7460be7943f5 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho, estudamos propriedades dos zeros de polinômi os ortogonais do tipo Sobolev . Provam os resultados sobre entrelaçamento, monotonicidade e assintótica. Fornecemos, também , condições s necessárias e/ou suficientes para os zeros dos polinômios {Sn}n≥0, gerados pela fórmula Sn(x) = Pn(x) + an−1Pn−1(x), ou Sn(x) −bn−1Sn−1(x) = Pn(x), on d e {Pn}n≥0 é um a sequência de polinômios ortogonais, ser em todos reais / We study various properti s of the zeros of Sobolev typ e orthogonal polynomials. Results on interacing, monotonicity and asymptotic are proved . We also provide general necessary and/or sufficient con ditions in order to the zeros of the polynomials {Sn}n≥0, generated by the formulae Sn(x) = Pn(x) + an−1Pn−1(x), or Sn(x) −bn−1Sn−1(x) = Pn(x), where {Pn}n≥0 is a sequence of orthogon al polynomials, are all real
|
Page generated in 0.0635 seconds