• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 378
  • 52
  • 47
  • 20
  • 12
  • 9
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 764
  • 308
  • 259
  • 204
  • 183
  • 171
  • 75
  • 70
  • 61
  • 60
  • 52
  • 52
  • 51
  • 49
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Hypergraph Capacity with Applications to Matrix Multiplication

Peebles, John Lee Thompson, Jr. 01 May 2013 (has links)
The capacity of a directed hypergraph is a particular numerical quantity associated with a hypergraph. It is of interest because of certain important connections to longstanding conjectures in theoretical computer science related to fast matrix multiplication and perfect hashing as well as various longstanding conjectures in extremal combinatorics. We give an overview of the concept of the capacity of a hypergraph and survey a few basic results regarding this quantity. Furthermore, we discuss the Lovász number of an undirected graph, which is known to upper bound the capacity of the graph (and in practice appears to be the best such general purpose bound). We then elaborate on some attempted generalizations/modifications of the Lovász number to undirected hypergraphs that we have tried. It is not currently known whether these attempted generalizations/modifications upper bound the capacity of arbitrary hypergraphs. An important method for proving lower bounds on hypergraph capacity is to exhibit a large independent set in a strong power of the hypergraph. We examine methods for this and show a barrier to attempts to usefully generalize certain of these methods to hypergraphs. We then look at cap sets: independent sets in powers of a certain hypergraph. We examine certain structural properties of them with the hope of finding ones that allow us to prove upper bounds on their size. Finally, we consider two interesting generalizations of capacity and use one of them to formulate several conjectures about connections between cap sets and sunflower-free sets.
362

A Discrete Approach to the Poincare-Miranda Theorem

Ahlbach, Connor Thomas 12 May 2013 (has links)
The Poincare-Miranda Theorem is a topological result about the existence of a zero of a function under particular boundary conditions. In this thesis, we explore proofs of the Poincare-Miranda Theorem that are discrete in nature - that is, they prove a continuous result using an intermediate lemma about discrete objects. We explain a proof by Tkacz and Turzanski that proves the Poincare-Miranda theorem via the Steinhaus Chessboard Theorem, involving colorings of partitions of n-dimensional cubes. Then, we develop a new proof of the Poincare-Miranda Theorem that relies on a polytopal generalization of Sperner's Lemma of Deloera - Peterson - Su. Finally, we extend these discrete ideas to attempt to prove the existence of a zero with the boundary condition of Morales.
363

Problems in combinatorial number theory

Amirkhanyan, Gagik M. 22 May 2014 (has links)
The dissertation consists of two parts. The first part is devoted to results in Discrepancy Theory. We consider geometric discrepancy in higher dimensions (d > 2) and obtain estimates in Exponential Orlicz Spaces. We establish a series of dichotomy-type results for the discrepancy function which state that if the L¹ norm of the discrepancy function is too small (smaller than the conjectural bound), then the discrepancy function has to be very large in some other function space.The second part of the thesis is devoted to results in Additive Combinatorics. For a set with small doubling an order-preserving Freiman 2-isomorphism is constructed which maps the set to a dense subset of an interval. We also present several applications.
364

Trees and graphs : congestion, polynomials and reconstruction

Law, Hiu-Fai January 2011 (has links)
Spanning tree congestion was defined by Ostrovskii (2004) as a measure of how well a network can perform if only minimal connection can be maintained. We compute the parameter for several families of graphs. In particular, by partitioning a hypercube into pieces with almost optimal edge-boundaries, we give tight estimates of the parameter thereby disproving a conjecture of Hruska (2008). For a typical random graph, the parameter exhibits a zigzag behaviour reflecting the feature that it is not monotone in the number of edges. This motivates the study of the most congested graphs where we show that any graph is close to a graph with small congestion. Next, we enumerate independent sets. Using the independent set polynomial, we compute the extrema of averages in trees and graphs. Furthermore, we consider inverse problems among trees and resolve a conjecture of Wagner (2009). A result in a more general setting is also proved which answers a question of Alon, Haber and Krivelevich (2011). After briefly considering polynomial invariants of general graphs, we specialize into trees. Three levels of tree distinguishing power are exhibited. We show that polynomials which do not distinguish rooted trees define typically exponentially large equivalence classes. On the other hand, we prove that the rooted Ising polynomial distinguishes rooted trees and that the Negami polynomial determines the subtree polynomial, strengthening results of Bollobás and Riordan (2000) and Martin, Morin and Wagner (2008). The top level consists of the chromatic symmetric function and it is proved to be a complete invariant for caterpillars.
365

On Independence, Matching, and Homomorphism Complexes

Hough, Wesley K. 01 January 2017 (has links)
First introduced by Forman in 1998, discrete Morse theory has become a standard tool in topological combinatorics. The main idea of discrete Morse theory is to pair cells in a cellular complex in a manner that permits cancellation via elementary collapses, reducing the complex under consideration to a homotopy equivalent complex with fewer cells. In chapter 1, we introduce the relevant background for discrete Morse theory. In chapter 2, we define a discrete Morse matching for a family of independence complexes that generalize the matching complexes of suitable "small" grid graphs. Using this matching, we determine the dimensions of the chain spaces for the resulting Morse complexes and derive bounds on the location of non-trivial homology groups. Furthermore, we determine the Euler characteristic for these complexes and prove that several of their homology groups are non-zero. In chapter 3, we introduce the notion of a homomorphism complex for partially ordered sets, placing particular emphasis on maps between chain posets and the Boolean algebras. We extend the notion of folding from general graph homomorphism complexes to the poset case, and we define an iterative discrete Morse matching for these Boolean complexes. We provide formulas for enumerating the number of critical cells arising from this matching as well as for the Euler characteristic. We end with a conjecture on the optimality of our matching derived from connections to 3-equal manifolds
366

Discrete Fractional Hermite-Hadamard Inequality

Arslan, Aykut 01 April 2017 (has links)
This thesis is comprised of three main parts: The Hermite-Hadamard inequality on discrete time scales, the fractional Hermite-Hadamard inequality, and Karush-Kuhn- Tucker conditions on higher dimensional discrete domains. In the first part of the thesis, Chapters 2 & 3, we define a convex function on a special time scale T where all the time points are not uniformly distributed on a time line. With the use of the substitution rules of integration we prove the Hermite-Hadamard inequality for convex functions defined on T. In the fourth chapter, we introduce fractional order Hermite-Hadamard inequality and characterize convexity in terms of this inequality. In the fifth chapter, we discuss convexity on n{dimensional discrete time scales T = T1 × T2 × ... × Tn where Ti ⊂ R , i = 1; 2,…,n are discrete time scales which are not necessarily periodic. We introduce the discrete analogues of the fundamental concepts of real convex optimization such as convexity of a function, subgradients, and the Karush-Kuhn-Tucker conditions. We close this thesis by two remarks for the future direction of the research in this area.
367

Stability of Linear Difference Systems in Discrete and Fractional Calculus

Er, Aynur 01 April 2017 (has links)
The main purpose of this thesis is to define the stability of a system of linear difference equations of the form, ∇y(t) = Ay(t), and to analyze the stability theory for such a system using the eigenvalues of the corresponding matrix A in nabla discrete calculus and nabla fractional discrete calculus. Discrete exponential functions and the Putzer algorithms are studied to examine the stability theorem. This thesis consists of five chapters and is organized as follows. In the first chapter, the Gamma function and its properties are studied. Additionally, basic definitions, properties and some main theorem of discrete calculus are discussed by using particular example. In the second chapter, we focus on solving the linear difference equations by using the undetermined coefficient method and the variation of constants formula. Moreover, we establish the matrix exponential function which is the solution of the initial value problems (IVP) by the Putzer algorithm.
368

Tropical Derivation of Cohomology Ring of Heavy/Light Hassett Spaces

Li, Shiyue 01 January 2017 (has links)
The cohomology of moduli spaces of curves has been extensively studied in classical algebraic geometry. The emergent field of tropical geometry gives new views and combinatorial tools for treating these classical problems. In particular, we study the cohomology of heavy/light Hassett spaces, moduli spaces of heavy/light weighted stable curves, denoted as $\calm_{g, w}$ for a particular genus $g$ and a weight vector $w \in (0, 1]^n$ using tropical geometry. We survey and build on the work of \citet{Cavalieri2014}, which proved that tropical compactification is a \textit{wonderful} compactification of the complement of hyperplane arrangement for these heavy/light Hassett spaces. For $g = 0$, we want to find the tropicalization of $\calm_{0, w}$, a polyhedral complex parametrizing leaf-labeled metric trees that can be thought of as Bergman fan, which furthermore creates a toric variety $X_{\Sigma}$. We use the presentation of $\overline{\calm}_{0,w}$ as a tropical compactification associated to an explicit Bergman fan, to give a concrete presentation of the cohomology.
369

Sudoku Variants on the Torus

Wyld, Kira A 01 January 2017 (has links)
This paper examines the mathematical properties of Sudoku puzzles defined on a Torus. We seek to answer the questions for these variants that have been explored for the traditional Sudoku. We do this process with two such embeddings. The end result of this paper is a deeper mathematical understanding of logic puzzles of this type, as well as a fun new puzzle which could be played.
370

Colorings of Hamming-Distance Graphs

Harney, Isaiah H. 01 January 2017 (has links)
Hamming-distance graphs arise naturally in the study of error-correcting codes and have been utilized by several authors to provide new proofs for (and in some cases improve) known bounds on the size of block codes. We study various standard graph properties of the Hamming-distance graphs with special emphasis placed on the chromatic number. A notion of robustness is defined for colorings of these graphs based on the tolerance of swapping colors along an edge without destroying the properness of the coloring, and a complete characterization of the maximally robust colorings is given for certain parameters. Additionally, explorations are made into subgraph structures whose identification may be useful in determining the chromatic number.

Page generated in 0.047 seconds