• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 379
  • 52
  • 47
  • 20
  • 12
  • 9
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 765
  • 309
  • 260
  • 204
  • 184
  • 172
  • 75
  • 70
  • 61
  • 60
  • 52
  • 52
  • 51
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Quantum Walks on Strongly Regular Graphs

Guo, Krystal January 2010 (has links)
This thesis studies the transition matrix of a quantum walk on strongly regular graphs. It is proposed by Emms, Hancock, Severini and Wilson in 2006, that the spectrum of a matrix based on the amplitudes of walks in the quantum walk, distinguishes strongly regular graphs. We begin by finding the eigenvalues of matrices describing the quantum walk for regular graphs. We also show that if two graphs are isomorphic, then the corresponding matrices produced by the procedure of Emms et al. are cospectral. We then look at the entries of the cube of the transition matrix and find an expression for the matrices produced by the procedure of Emms et al. in terms of the adjacency matrix and incidence matrices of the graph.
92

Equiangular Lines and Antipodal Covers

Mirjalalieh Shirazi, Mirhamed January 2010 (has links)
It is not hard to see that the number of equiangular lines in a complex space of dimension $d$ is at most $d^{2}$. A set of $d^{2}$ equiangular lines in a $d$-dimensional complex space is of significant importance in Quantum Computing as it corresponds to a measurement for which its statistics determine completely the quantum state on which the measurement is carried out. The existence of $d^{2}$ equiangular lines in a $d$-dimensional complex space is only known for a few values of $d$, although physicists conjecture that they do exist for any value of $d$. The main results in this thesis are: \begin{enumerate} \item Abelian covers of complete graphs that have certain parameters can be used to construct sets of $d^2$ equiangular lines in $d$-dimen\-sion\-al space; \item we exhibit infinitely many parameter sets that satisfy all the known necessary conditions for the existence of such a cover; and \item we find the decompose of the space into irreducible modules over the Terwilliger algebra of covers of complete graphs. \end{enumerate} A few techniques are known for constructing covers of complete graphs, none of which can be used to construct covers that lead to sets of $d^{2}$ equiangular lines in $d$-dimensional complex spaces. The third main result is developed in the hope of assisting such construction.
93

Quantum Walks on Strongly Regular Graphs

Guo, Krystal January 2010 (has links)
This thesis studies the transition matrix of a quantum walk on strongly regular graphs. It is proposed by Emms, Hancock, Severini and Wilson in 2006, that the spectrum of a matrix based on the amplitudes of walks in the quantum walk, distinguishes strongly regular graphs. We begin by finding the eigenvalues of matrices describing the quantum walk for regular graphs. We also show that if two graphs are isomorphic, then the corresponding matrices produced by the procedure of Emms et al. are cospectral. We then look at the entries of the cube of the transition matrix and find an expression for the matrices produced by the procedure of Emms et al. in terms of the adjacency matrix and incidence matrices of the graph.
94

Equiangular Lines and Antipodal Covers

Mirjalalieh Shirazi, Mirhamed January 2010 (has links)
It is not hard to see that the number of equiangular lines in a complex space of dimension $d$ is at most $d^{2}$. A set of $d^{2}$ equiangular lines in a $d$-dimensional complex space is of significant importance in Quantum Computing as it corresponds to a measurement for which its statistics determine completely the quantum state on which the measurement is carried out. The existence of $d^{2}$ equiangular lines in a $d$-dimensional complex space is only known for a few values of $d$, although physicists conjecture that they do exist for any value of $d$. The main results in this thesis are: \begin{enumerate} \item Abelian covers of complete graphs that have certain parameters can be used to construct sets of $d^2$ equiangular lines in $d$-dimen\-sion\-al space; \item we exhibit infinitely many parameter sets that satisfy all the known necessary conditions for the existence of such a cover; and \item we find the decompose of the space into irreducible modules over the Terwilliger algebra of covers of complete graphs. \end{enumerate} A few techniques are known for constructing covers of complete graphs, none of which can be used to construct covers that lead to sets of $d^{2}$ equiangular lines in $d$-dimensional complex spaces. The third main result is developed in the hope of assisting such construction.
95

Core Structures in Random Graphs and Hypergraphs

Sato, Cristiane Maria January 2013 (has links)
The k-core of a graph is its maximal subgraph with minimum degree at least k. The study of k-cores in random graphs was initiated by Bollobás in 1984 in connection to k-connected subgraphs of random graphs. Subsequently, k-cores and their properties have been extensively investigated in random graphs and hypergraphs, with the determination of the threshold for the emergence of a giant k-core, due to Pittel, Spencer and Wormald, as one of the most prominent results. In this thesis, we obtain an asymptotic formula for the number of 2-connected graphs, as well as 2-edge-connected graphs, with given number of vertices and edges in the sparse range by exploiting properties of random 2-cores. Our results essentially cover the whole range for which asymptotic formulae were not described before. This is joint work with G. Kemkes and N. Wormald. By defining and analysing a core-type structure for uniform hypergraphs, we obtain an asymptotic formula for the number of connected 3-uniform hypergraphs with given number of vertices and edges in a sparse range. This is joint work with N. Wormald. We also examine robustness aspects of k-cores of random graphs. More specifically, we investigate the effect that the deletion of a random edge has in the k-core as follows: we delete a random edge from the k-core, obtain the k-core of the resulting graph, and compare its order with the original k-core. For this investigation we obtain results for the giant k-core for Erdős-Rényi random graphs as well as for random graphs with minimum degree at least k and given number of vertices and edges.
96

Gallai-Ramsey Numbers for C7 with Multiple Colors

Bruce, Dylan 01 January 2017 (has links)
The core idea of Ramsey theory is that complete disorder is impossible. Given a large structure, no matter how complex it is, we can always find a smaller substructure that has some sort of order. One view of this problem is in edge-colorings of complete graphs. For any graphs G, H1, ..., Hk, we write G → (H1, ..., Hk), or G → (H)k when H1 = ··· = Hk = H, if every k-edge-coloring of G contains a monochromatic Hi in color i for some i ∈ {1,...,k}. The Ramsey number rk(H1, ..., Hk) is the minimum integer n such that Kn → (H1, ..., Hk), where Kn is the complete graph on n vertices. Computing rk(H1, ..., Hk) is a notoriously difficult problem in combinatorics. A weakening of this problem is to restrict ourselves to Gallai colorings, that is, edge-colorings with no rainbow triangles. From this we define the Gallai-Ramsey number grk(K3,G) as the minimum integer n such that either Kn contains a rainbow triangle, or Kn → (G)k . In this thesis, we determine the Gallai-Ramsey numbers for C7 with multiple colors. We believe the method we developed can be applied to find grk(K3, C2n+1) for any integer n ≥ 2, where C2n+1 denotes a cycle on 2n + 1 vertices.
97

Multicolor Ramsey and List Ramsey Numbers for Double Stars

Ruotolo, Jake 01 January 2022 (has links)
The core idea of Ramsey theory is that complete disorder is impossible. Given a large structure, no matter how complex it is, we can always find a smaller substructure that has some sort of order. For a graph H, the k-color Ramsey number r(H; k) of H is the smallest integer n such that every k-edge-coloring of Kn contains a monochromatic copy of H. Despite active research for decades, very little is known about Ramsey numbers of graphs. This is especially true for r(H; k) when k is at least 3, also known as the multicolor Ramsey number of H. Let Sn denote the star on n+1 vertices, the graph with one vertex of degree n (the center of Sn) and n vertices of degree 1. The double star S(n,m) is the graph consisting of the disjoint union of Sn and Sm together with an edge joining their centers. In this thesis, we study the multicolor Ramsey number of double stars. We obtain upper and lower bounds for r(S(n,m); k) when k is at least 3 and prove that r(S(n,m); k) = nk + m + 2 for k odd and n sufficiently large. We also investigate a new variant of the Ramsey number known as the list Ramsey number. Let L be an assignment of k-element subsets of the positive integers to the edges of Kn. A k-edge-coloring c of Kn is an L-coloring if c(e) belongs to L(e) for each edge e of Kn. The list Ramsey number rl(H; k) of H is the smallest integer n such that there is some L for which every L-coloring of Kn contains a monochromatic copy of H. In this thesis, we study rl(S(1,1); p) and rl(Sn; p), where p is an odd prime number.
98

Evolutionary divide and conquer : a novel genetic approach to the TSP

Valenzuela, Christine Lesley January 1995 (has links)
No description available.
99

Network optimization and its applications to discrete programming problems

Mahar, Mumtaz Hussain January 1995 (has links)
No description available.
100

A relational approach to optimization problems

Curtis, Sharon January 1996 (has links)
No description available.

Page generated in 0.0494 seconds