• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

<b>NUMERICAL ANALYSIS OF IN-PLANE SHEAR BEHAVIOR OF SC WALLS UNDER COMBINED LOADINGS</b>

Nikhil Mittal (19164610) 22 July 2024 (has links)
<p dir="ltr">Steel-concrete composite (SC) walls are increasingly gaining interest as an alternative to reinforced concrete (RC) walls for safety-related nuclear facilities. The major loading for the SC design is seismic loading. Seismic loading results in combined in-plane shear with axial or out-of-plane moment loading on SC structures. The primary resistance against the lateral loading in these structures is provided by in-plane shear resistance. While the AISC N690 design code includes equations for determining in-plane shear capacity and combined loading, its guidance is limited to pure in-plane shear capacity, in-plane shear combined with out-of-plane moments and combined out-of-plane shear forces. It lacks comprehensive design equations for combined loadings, such as in-plane shear with axial or out-of-plane moment loading. Additionally, the N690 design equation for in-plane shear capacity is somewhat conservative. Understanding the behavior of SC walls under these combined loadings is crucial for their optimal design.</p><p dir="ltr">This research addresses this gap by performing numerical investigation based on the finite element modelling (FEM) and mechanics-based approaches to analyze the behavior of SC walls under these loadings. The models were verified and validated using data from previous experimental studies. A parametric study was conducted to evaluate the impact of various design and material parameters on the in-plane shear capacity under combined loadings. Based on the parametric data and linear regression analysis, design equations were formulated to predict the in-plane shear capacity. Interaction envelopes were developed to compare the results from these models with those from previous numerical studies. Finally, practical design guidance and design equations were provided to design these structures.</p>
2

Contribution à l’analyse multi-échelles et multi-physiques du comportement mécanique de matériaux composites à matrice thermoplastique sous températures critiques / Contribution to the multi-scale and multi-physical analysis of the mechanical behaviour of thermoplastic matrix composite materials under critical temperatures

Carpier, Yann 13 December 2018 (has links)
L’utilisation croissante des matériaux composites à matrice thermoplastique dans l’industrie aéronautique passe par une meilleure compréhension de leur comportement mécanique lors d’une exposition à un flux rayonnant (conséquence d’un incendie). Cette étude, portant sur le comportement thermo-mécanique de stratifiés tissés quasi-isotropes composés d’une matrice PPS renforcée par des fibres de carbone, se divise en 3 parties. Tout d’abord, la décomposition thermique du matériau et l’évolution de ses propriétés mécaniques avec la température sont étudiées. Ces données permettent ensuite d’appréhender le comportement de ces matériaux soumis à des chargements combinés (flux rayonnant et chargement mécanique en traction ou en compression, de type monotone à rupture et en fluage). La dernière partie vise à identifier les paramètres matériau nécessaires pour la simulation thermo-mécanique aux échelles macroscopique et mésoscopique. / The increasing use of thermoplastic-based composite materials in the aeronautical industry requires a better understanding of their mechanical behavior when exposed to radiant heat flux (consequence of a fire exposure). This study, which examines the thermo-mechanical behavior of quasi-isotropic woven laminates composed of PPS reinforced with carbon fibers, is divided into 3 parts. First, the thermal decomposition of the material and the evolution of its mechanical properties with temperature is studied. These data help to understand the behavior of these materials subjected to combined loads (radiant heat flux and tensile or compressive loadings). The last part aims to identify the material parameters necessary for thermo-mechanical simulation at macroscopic and mesoscopic scales.

Page generated in 0.0511 seconds