• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1364
  • 425
  • 366
  • 282
  • 177
  • 68
  • 58
  • 33
  • 25
  • 18
  • 17
  • 10
  • 10
  • 9
  • 9
  • Tagged with
  • 3766
  • 814
  • 540
  • 442
  • 429
  • 386
  • 362
  • 361
  • 357
  • 332
  • 316
  • 307
  • 304
  • 253
  • 247
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
561

Experimental Study of the Effects of Nanosecond-Pulsed Non-equilibrium Plasmas on Low-Pressure, Laminar, Premixed Flames

Li, Ting January 2014 (has links)
No description available.
562

Combustion of solid fuel in a fluidized bed combustor

Hossain, Abu Noman January 1998 (has links)
No description available.
563

The gas chromatographic study of the cool flame and motored engine combustion of some hydrocarbons /

Menapace, Henry Robert January 1958 (has links)
No description available.
564

Methods of Diffusing Pulse Detonation Combustion

Janka, Adam Martin 29 June 2014 (has links)
Pulse detonation combustion has been of interest for many years since it offers several advantages over standard deflagrative combustion. In theory, detonative combustion is a better use of fuel compared to deflagrative combustion since less entropy is generated during a detonation. As a result, detonation offers higher pressure and temperature gain across the wave front compared to the comparable deflagration. Since a detonation is a supersonic event which uses a shock to compress and dissociate reactants, a Pulse Detonation Combustor (PDC) is a relatively simple device that does not necessarily require a large compressor section at the inlet. Despite these benefits, using a turbine to extract work from a PDC is a problem littered with technical challenges. A PDC necessarily operates cyclically, producing highly transient pressure and temperature fields. This cyclic operation presents concerns with regards to turbine reliability and effective work extraction. The research presented here investigated the implementation of a pulse detonation diffuser, a device intended to temporally and spatially distribute the energy produced during a detonation pulse. This device would be an inert extension from a baseline PDC, manipulating the decaying detonation front while minimizing entropy production. A diffuser will seek to elongate, steady, attenuate, and maintain the quality of energy contained in the exhaust of a detonation pulse. These functions intend to reduce stresses introduced to a turbine and aid in effective work extraction. The goal of this research was to design, implement, and evaluate such a diffuser using the using conventional analysis and simulated and physical experimentation. Diffuser concepts using various wave dynamic mechanisms were generated. Analytical models were developed to estimate basic timing and wave attenuation parameters for a given design. These models served to inform the detail design process, providing an idea for geometric scale for a diffuser. Designs were simulated in ANSYS Fluent. The simulated performance of each diffuser was measured using metrics quantifying the wave attenuation, pulse elongation, pulse steadying, and entropy generation for each design. The most promising diffuser was fabricated and tested using a detonation tube. Diffuser performance was compared against analytical and computational models using dynamic pressure transducer diagnostics. / Master of Science
565

Studies in vibrofluidized beds and synthesis of silica catalysts

Sprung, Renato January 1987 (has links)
The effect of the solid-circulation rate and pattern as well as the air-gap size on heat-transfer coefficients between a horizontal, cylindrical heater and vibrated beds of Master Beads (spherical alumina) and glass spheres was studied. Solid piles were observed to form at specific bed locations. Solid-circulation paths were directed from the shallowest toward the deepest region of the vibrated bed. For beds in which the solid pile formed above the heating surface, local solid-circulation loops were observed above and below the heater. Air gaps developed at the top and bottom of the cylindrical heater. Heat-transfer coefficients of 140-350 W/m²K in beds of glass spheres and 180-480 W/m²K in beds of Master Beads were determined for a temperature difference of 30°C between the heater and vibrated bed. The trends in the behavior of the heat-transfer coefficient could be explained in terms of a model that accounted for the air-gap size and particle renewal in the layer closest to the heater. Increased solid-circulation rates improved the heat-transfer performance until larger air-gap sizes eventually compromised any increase in solid circulation. The expansion of the interlayer spacing of H-Magadiite (a layered silicic acid) by the introduction of pillars containing silicon atoms was investigated. A trisiloxane and two trichloroorganosilane compounds were used as the pillaring agents. The interlayer space of H-Magadiite was successfully expanded by pillaring with trichloroorganosilanes. The minimum dimensions of the pores that access the interlayer space of the pillared compounds were determined as being 6.2 Å and 9.5 Å (dimensions at perpendicular directions). Pillaring of H-Magadiite at low pH and temperatures close to 0 °C yielded the highest surface areas, e.g., increasing the surface area from 35 to 130-200 m²/g. The pillared compounds were found to be thermally stable up to temperatures of 650°C. / Ph. D.
566

The production of lower molecular weight hydrocarbons during the thermal decomposition of pulverized coal in air and nitrogen

Wegener, Dennis Charles. January 1978 (has links)
Call number: LD2668 .T4 1978 W43 / Master of Science
567

Modelling of biodiesel spray combustion

Mohd Yasin, Mohd Fairus Bin January 2014 (has links)
No description available.
568

Investigations of HCCI control using duel fuel strategies

Aldawood, Ali Mohammad A. January 2014 (has links)
No description available.
569

Impact of biomass on the development of coal fluidity

Kokonya, Sylvia Nelima January 2014 (has links)
No description available.
570

Aspects of premixed tubulent combustion

Chew, Tuan Chiong January 1988 (has links)
No description available.

Page generated in 0.0862 seconds