• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 26
  • 22
  • 14
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Návrh spalovací komory 30 kW pro plynná paliva / Design of combustion chamber 30 kW for gaseous fuels

Rychter, Aleš January 2014 (has links)
Master thesis deals with design of combusting chamber for gaseous fuels with predicted thermal output less than 30 kilowatts. Designed equipment will be used as a generator of flue gases with required parameters further used for experimental catalytic unit. Due to the need of draft creation inside the combustion chamber and exhaust pipe is master thesis also deals with design of ejector nozzle, which will be used for this purpose. Opening chapters of this work, considering a theoretical part, are focused on basic classification of combustion chambers and industrial burners. Next and main chapter is dedicated to main goal of this work, which is combustion chamber design, containing necessary calculations divided into balance calculation and construction design. Final chapters deals with above mentioned calculation of ejector nozzle ensuring sufficient draft and also sufficient cooling of flue gases incoming from catalytic unit.
42

Etude expérimentale et modélisation de l’oxydation de composés organiques à des fins de sécurité industrielle : cinétique d’oxydation des butènes (1-, cis-2-, trans-2- et iso-) / Experimental and kinetic modeling study of the oxidation of organic compounds related to industrial safety : oxidation kinetic of butenes (1-, cis-2-, trans-2- et iso-)

Fenard, Yann 18 December 2014 (has links)
Dans le cadre du projet DISPATMO (étude de la prévision des risques de pollution liés à la dispersion atmosphérique de produits chimiques), des études de risques liés aux incendies et explosions dus aux produits chimiques stockés sur deux sites tests ont été menées. Le but est d’identifier les produits de combustion de certains composés cibles définis au début du projet, ainsi que d’estimer leur concentration. Les composés tests sont l’éthanol, le 2-butanone, le toluène et le solvant TIFLEX. Ces composés sont susceptibles, surtout à richesse élevées, de former des quantités non-négligeables d’isomères du butène, composés chimiques connus pour être d’importants intermédiaires de la combustion d’hydrocarbures. Après une étude bibliographique sur les isomères du butène, de l’éthanol, de la 2-butanone et du toluène, un mécanisme cinétique détaillé pour simuler l’oxydation de ces composés a été proposé. Une étude expérimentale de l’oxydation de 4 butènes (1-butène, trans-2-butène, cis-2-butène et iso-butène) a été réalisée en réacteur auto-agité (T = 900-1440 K, p = 1 atm, = 0,25, 0,5, 1 et 2, = 70 ms) et en chambre de combustion sphérique (Ti = 300 K, pi = 1, 2, 3 et 5 atm, = 0,8-1,4). Les résultats obtenus ont été confrontés à la simulation. Des données expérimentales issues de la littérature ont été utilisées afin de valider le modèle pour l’oxydation de l’éthanol, de la 2-butanone, du toluène et des isomères du butène. Enfin, une étude expérimentale de l’oxydation du solvant TIFLEX a été menée en réacteur auto-agité (T = 740-1310 K, p = 1 atm, = 0,5, 1 et 2) pour en connaître la composition ainsi que pour identifier et quantifier les produits d’oxydation. Le mécanisme cinétique proposé comporte un coeur C0-C4 robuste, en faisant un outil prédictif fiable, pouvant servir de base à des mécanismes plus étendus capables de représenter la combustion de nombreuses autres espèces (alcanes, alcènes, alcools, aldéhydes ou cétones), par ajout de sous-mécanismes. / In the context of the DISPATMO project (study of the forecast of the risks of pollution related to the atmospheric dispersal of chemicals), risk studies linked to the fires and the explosions due to chemical storage were conducted. The purpose is to identify the combustion products of certain target compounds defined at the beginning of the project, as well as to estimate their concentration. The target compounds include ethanol, 2-butanone, toluene and the solvent TIFLEX. These compounds lead, especially in fuel-rich conditions, to the formation of high quantities of butene isomers, compounds known as important intermediates of hydrocarbon combustion. After a bibliographical study on butene isomers, ethanol, 2- butanone and toluene, a detailed kinetic mechanism for the simulation of the oxidation of these compounds was proposed. An experimental study of the oxidation of the butene isomers was performed in a jet-stirred reactor (T = 900-1440 K, p = 1 atm, = 0.25, 0.5, 1 and 2, = 70 ms) and in a spherical combustion chamber (Ti = 300 K, pi = 1, 2, 3 and 5 atm, = 0.8-1.4). Experimental results were compared with their simulations. Experimental data from the literature were used to validate the model for the oxidation of ethanol, 2-butanone, toluene and butene isomers. Finally, an experimental study of the oxidation of the solvent TIFLEX was performed in the jet-stirred reactor (T = 740-1310 K, p = 1 atm, = 0.5, 1 and 2) in order to know the composition as well as to identify and quantify of the oxidation products. The proposed kinetic mechanism contains a strong C0-C4 base, resulting in a reliable predictive tool, which can be used as a base in larger mechanisms simulating the combustion other species (alkanes, alkenes, alcohols, aldehydes or ketones), by addition of sub-mechanisms.
43

Measurement of Thermal Insulation properties of TBC inside the Combustion chamber

Kianzad, Siamak January 2017 (has links)
This master thesis project was performed in collaboration with Scania CV AB, Engine Materials group. The purpose with the project was to investigate different ceramic TBC (Thermal Barrier Coating) thermal insulation properties inside the combustion chamber. Experimental testing was performed with a Single-Cylinder engine with TBC deposited on selected components. A dummy-valve was developed and manufactured specifically for this test in order to enable a water cooling system and to ease the testing procedure. The dummy-valve consists of a headlock, socket, valve poppet and valve shaft. Additionally, a copper ring is mounted between the cylinder head and the valve poppet to seal the system from combustion gases. Thermocouples attached to the modified valve poppet and valve shaft measured the temperature during engine test to calculate the heat flux. The TBCs consisted of three different materials: 7-8% yttrium-stabilized zirconia (8YSZ), gadolinium zirconia and lanthanum zirconia. The 8YSZ TBC was tested as standard, but also with microstructural modifications. Modifications such as pre-induced segmented cracks, nanostructured zones and sealed porosity were used. The results indicated that the heat flux of 8YSZ-standard, 8YSZ-nano and 8YSZ-segmented cracks was in level with the steel reference. In the case of 8YSZ-sealed porosity the heat flux was measured higher than the steel reference. Since 8YSZ-standard and 8YSZ-sealed porosity are deposited with the same powder it is believed that the high heat flux is caused by radiative heat transfer. The remaining samples have had some microstructural changes during engine testing. 8YSZ-nano had undergone sintering and its nanostructured zones became fewer and almost gone after engine testing leading to less heat barrier in the top coat of the TBC. However, for 8YSZ-segmented cracks and gadolinium zirconia lower heat flux was measured due to the appearance of horizontal cracks. These cracks are believed to act as internal barriers as they are orientated perpendicular to the heat flow. During long-time (5 hour) engine tests the 8YSZ-standard exhibited the same phenomena: a decrease in heat flux due to propagation of horizontal cracks. One-dimensional heat flux was not achieved and the main reason for that was caused by heating and cooling of the shafts outer surface. However, the dummy-valve system has proven to be a quick, easy and stable to perform tests with a Single-Cylinder engine. Both water-cooling and long-time engine tests were conducted with minor issues. The dummy-valve has been further developed for future tests. Changes to the valve shaft are the most remarkable: smaller diameter to reduce heat transfer and smaller pockets to ensure better thermocouple positioning. Another issue was gas leakage from the combustion chamber through the copper ring and valve poppet joint. The copper ring will be designed with a 1 mm thick track to improve sealing, hence better attachment to the valve poppet.
44

Verifikace modelu pro predikci vlastností spalovacího procesu / Verification of the model for predicting the properties of the combustion process

Horsák, Jan January 2014 (has links)
This work thoroughly analyzes a previously created computational model for predicting characteristic properties of the combustion process in an experimental combustion chamber. Any found shortcomings of the original model are removed and the model is further improved prior to its application on 11 real cases of combustion tests performed at various conditions and with various fuels. Data provided by the model are confronted with the data obtained during the combustion tests and the model accuracy is evaluated, based on local heat flux along the length of the combustion chamber. Finally, the overall usefulness of the model is determined by the means of evaluating the acquired accuracy values, and further possibilities of model improvement and use are presented.
45

Analýza možností akumulační tepelné elektrárny v podmínkách ČR / Use storage thermal power in Czech republic

Bednář, František January 2014 (has links)
This diploma’s thesis analyzes the possibility of accumulation of thermal power plants in the Czech Republic. The thesis is divided into several parts. The first part describes the different types of storage power plants, the historical development of power storage for compressed air and the appropriateness of their location. The second part is devoted to the design of storage power plant for compressed air in South Moravia. In the next chapter, a calculation is made of all equipment storage power plant, including turbo-compressor, combustion chamber, combustion turbines, the volume of storage tanks and two heat exchangers. The last part is the economic analysis of the return on investment of such a project.

Page generated in 0.1167 seconds