• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uncontrolled intersection coordination of the autonomous vehicle based on multi-agent reinforcement learning.

McSey, Isaac Arnold January 2023 (has links)
This study explores the application of multi-agent reinforcement learning (MARL) to enhance the decision-making, safety, and passenger comfort of Autonomous Vehicles (AVs)at uncontrolled intersections. The research aims to assess the potential of MARL in modeling multiple agents interacting within a shared environment, reflecting real-world situations where AVs interact with multiple actors. The findings suggest that AVs trained using aMARL approach with global experiences can better navigate intersection scenarios than AVs trained on local (individual) experiences. This capability is a critical precursor to achieving Level 5 autonomy, where vehicles are expected to manage all aspects of the driving task under all conditions. The research contributes to the ongoing discourse on enhancing autonomous vehicle technology through multi-agent reinforcement learning and informs the development of sophisticated training methodologies for autonomous driving.

Page generated in 0.0766 seconds