• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Communication Loss Management and Analysis for Multiple Spacecraft Formation Flying Missions

Elnabelsya, Mohamed 31 December 2010 (has links)
This thesis presents a method for managing periods of communication loss between multiple spacecraft in formation flying (MSFF), and analyzes the effects of this method on the stability of the formation keeping control algorithm. The controller of interest in this work in an adaptive nonlinear controller, where synchronization is also incorporated to force the position tracking errors to converge to zero at the same rate. The communication loss compensation technique proposed in this thesis is to use the previously communicated data in lieu of the lost data, which is an effective and computationally-efficient technique that is advantageous for small satellites. The performance parameter of interest in this research is the maximum rate of communication loss that an MSFF system can withstand before going unstable, and this is analyzed theoretically and through simulations. Finally, experiments involving multiple robots in formation with communication loss are conducted, and the results are presented.
2

Communication Loss Management and Analysis for Multiple Spacecraft Formation Flying Missions

Elnabelsya, Mohamed 31 December 2010 (has links)
This thesis presents a method for managing periods of communication loss between multiple spacecraft in formation flying (MSFF), and analyzes the effects of this method on the stability of the formation keeping control algorithm. The controller of interest in this work in an adaptive nonlinear controller, where synchronization is also incorporated to force the position tracking errors to converge to zero at the same rate. The communication loss compensation technique proposed in this thesis is to use the previously communicated data in lieu of the lost data, which is an effective and computationally-efficient technique that is advantageous for small satellites. The performance parameter of interest in this research is the maximum rate of communication loss that an MSFF system can withstand before going unstable, and this is analyzed theoretically and through simulations. Finally, experiments involving multiple robots in formation with communication loss are conducted, and the results are presented.

Page generated in 0.1316 seconds