Spelling suggestions: "subject:"communmunication multi canal"" "subject:"commoncommunication multi canal""
1 |
Tolérance aux pannes dans un réseau de capteurs sans fil multi-canal / Fault tolerance in a mulichannel wireless sensor networkChouikhi, Samira 02 June 2016 (has links)
Le développement dans les micros systèmes électromécaniques (MEMS) combiné avec l'émergence des nouvelles technologies de l'information et de la communication a permis l'intégration des fonctionnalités de collecte, de traitement et de transmission des données dans un seul dispositif minuscule qui est le capteur sans fil. En voie de conséquence, les réseaux composés de ces capteurs offrent aujourd'hui une pléiade d'avantages par rapport aux réseaux traditionnels notamment en termes de simplicité et de coût de déploiement. Ceci a conduit au développement d'une gamme très variée d'applications des réseaux de capteurs sans fil dans les domaines de la santé, de l'environnement, de l'industrie, des infrastructures, des activités spatiales, ou encore des activités militaires et dans plusieurs autres domaines. Cependant, de nouveaux défis surgissent des caractéristiques particulières de ces réseaux. En réalité, de nombreuses applications de ces réseaux sont critiques et exigent qu'un fonctionnement correct du réseau soit maintenu le plus longtemps possible. Par contre, les environnements dans lesquels ces réseaux sont déployés rendent la mission de maintien en condition correcte de ces réseaux très compliquée et même parfois impossible ; d'où la nécessité d'intégrer des mécanismes d'auto-correction qui visent à surmonter les problèmes qui puissent surgir dans le réseau sans intervention humaine. Dans ce contexte, nous avons, dans cette thèse, concentré notre étude sur les techniques et les mécanismes mis en œuvre pour améliorer la propriété de tolérance aux pannes dans les réseaux de capteurs sans fil. Tout d'abord, nous avons proposé des approches centralisées et distribuées pour l'auto-rétablissement de la connectivité et la réallocation des canaux dans un contexte de réseaux de capteurs sans fil reposant sur des communications multi-canal après la panne d'un nœud critique. Après la formulation du problème sous la forme d'un problème d'optimisation multi-objectif, nous avons proposé des algorithmes basés sur des heuristiques de coloration de graphes et d'arbre de Steiner, très connus dans la théorie de graphes pour la résolution de ce type de problèmes. Dans une deuxième partie de cette thèse, nous avons étudié un cas d'application particulier, l'agriculture de précision, et avons proposé une solution distribuée pour le rétablissement du fonctionnement du réseau de capteurs sans fil / The development in Micro Electro-Mechanic Systems (MEMS) combined with the emergence of new information and communication technologies allowed the integration of the data sensing, processing and transmission in a single tiny device which is the wireless sensor. Consequently, the networks formed by these sensors offer a lot advantages compared with the traditional networks, in particular in terms of the deployment simplicity and cost. This led to the development of a wide range of Wireless Sensor Networks' applications in the domains of health, environment, industry, infrastructures, spatial activities, or even military activities and in many other domains. However, new challenges appear from the particular characteristics of these networks. In fact, many applications of this type of networks are critical and require that the correct functioning of the network is maintained as long as possible. However, the environments in which these networks are deployed return the mission of network maintenance very complicated or even impossible; hence, the necessity of integrating mechanisms of self-correction which aim to overcome the appeared problems without a human intervention. In this context, we focused our study on the techniques and mechanisms implemented to improve the property of fault tolerance in the wireless sensor networks. First, we proposed centralized and distributed approaches for the connectivity restoration and the channel reallocation in a multi-channel communication context after the failure of a critical node. After the formulation of the problem as a multi-objective optimization problem, we proposed some algorithms based on the heuristics of graphs coloring and Steiner tree, very known in the graph theory to solve this type of problems. In a second part in this thesis, we studied a particular application case, precision agriculture, and we proposed a distributed solution for the failure recovery in wireless sensor networks
|
2 |
Energy efficient underwater acoustic sensor networks / Réseaux de capteurs acoustiques sous-marins écoénergétiquesZidi, Chaima 08 March 2018 (has links)
Les réseaux de capteurs acoustiques sous-marins (UW-ASN) sont les plus nouveaux achèvements technologiques en termes de communication. Les UW-ASN visent à observer et à explorer les lacs, les rivières, les mers et les océans. Récemment, ils ont été soumis à une attention particulière en raison de leur grand potentiel en termes d'applications prometteuses dans divers domaines (militaires, environnementaux, scientifiques ...) et aux nouvelles questions scientifiques qu'ils suscitent. Un problème majeur dans les UW-ASN est l'épuisement rapide de l'énergie, car une grande puissance est nécessaire pour la communication acoustique, tandis que le budget de la batterie des capteurs est limité. Par conséquent, les protocoles de communication énergétiques revêtent une importance primordiale pour faire usage judiciaire du budget énergétique disponible. Dans ce contexte, cette thèse vise à étudier les principales caractéristiques des capteurs acoustiques sous-marins difficiles afin de concevoir des protocoles de communication énergétiques, plus spécifiquement au niveau routage et MAC. Tout d'abord, nous abordons le problème des trous énergétiques dans UW-ASN. Le problème du « sink-hole » se produit lorsque les capteurs les plus proches du sink épuisent leur énergie plus rapidement en raison de leur charge plus lourde. En effet, ces capteurs, en particulier ceux qui sont à un seul saut du sinkstatique, agissent comme des relais pour tous les autres capteurs, ce qui leur épuise sévèrement l’énergie.A la couche de routage,en particulier, nous proposons de distribuer la charge transmise par chaque capteur parmi plusieurs voisins potentiels, en supposant que les capteurs peuvent ajuster leur gamme de communication entre deux niveaux lorsqu'ils envoient ou transmettent des données. Plus précisément, nous déterminons pour chaque capteur l'ensemble des prochains sauts avec les poids de charge associés qui entraînent un épuisement équitable d'énergie entre tous les capteurs du réseau. Ensuite, nous étendons notre stratégie de routage équilibrée en supposant que chaque capteur n'est pas seulement capable d'ajuster sa puissance d'émission à 2 niveaux mais aussi jusqu'à n niveaux où n> 2. Par conséquent, à la couche de routage, pour chaque valeur possible de n, nous déterminons pour chaque capteur l'ensemble des éventuels sauts avec les poids de charge associés qui mènent à une consommation d'énergie équitable chez tous les capteurs du réseau. En outre, nous obtenons le nombre optimal de puissances de transmission n qui équilibre la consommation d'énergie de tous les capteurs pour chaque configuration de réseau. En plus de cela, il convient de souligner que notre protocole de routage étendu utilise un modèle de canal à variation de temps plus réaliste qui tient compte de la plupart des caractéristiques fondamentales de la propagation acoustique sous-marine. Les résultats analytiques montrent que notre protocole de routage assure une réduction importante de la consommation d’énergie. Deuxièmement, pour atténuer les impacts de collision spectaculaires gaspillant l’énergie, nous concevons un protocole MAC multicanal (MC-UWMAC) évitant les collisions pour les UW-ASNs. MC-UWMAC fonctionne avec un canal de contrôle (décomposé en créneaux de temps) et un ensemble de canaux de données à bande passante égale. Les créneaux du canal de contrôle sont dédiés à l’échange RTS / CTS permettant à une paire de capteurs communicants de s'accorder sur l'heure de début de la communication sur un canal de données pré-alloué. Dans cette thèse, nous proposons deux nouvelles procédures associées d'allocation des créneaux du canal de contrôle et d'attribution des canaux de données sans nécessiter de frais de négociation supplémentaires. En conséquence, chaque capteur peut initier l'échange RTS / CTS uniquement à son créneau assigné, calculé à l'aide d'une procédure d'allocation basée sur une partition virtuelle de grille de la zone de déploiement. (...) / UnderWaterAcoustic Sensor Networks (UW-ASNs) are the newest technological achievement in terms of communication. Composed of a set of communicating underwater sensors, UW-ASNs are intended to observe and explore lakes, rivers, seas and oceans. Recently, they have been subject to a special attention due to their great potential in terms of promising applications in various domains (military, environmental, scientific...) and to the new scientific issues they raise. A great challenging issue in UW-ASNs is the fast energy depletion since high power is needed for acoustic communication while sensors battery budget is limited. Hence, energy-efficient networking protocols are of a paramount importance to make judicious use of the available energy budget while considering the distinguishing underwater environment characteristics. In this context, this thesis aims at studying the main challenging underwater acoustic sensors characteristics to design energy-efficient communication protocols specifically at the routing and MAC layers. First, we address the problem of energy holes in UW-ASNs. The sink-hole problem occurs when the closest nodes to sink drain their energy faster due to their heavier load. Indeed, those sensors especially the ones that are 1-hop away from the static sink act as relays to it on behalf of all other sensors, thus suffering from severe energy depletion. In particular, at the routing layer, we propose to distribute the transmission load at each sensor among several potential neighbors, assuming that sensors can adjust their communication range among two levels when they send or forward data. Specifically, we determine for each sensor the set of next hops with the associated load weights that lead to a fair energy depletion among all sensors in the network. Then, we extend our balanced routing strategy by assuming that each sensor node is not only able to adjust its transmission power to 2 levels but eventually up to n levels where n > 2. Consequently, at the routing layer, for each possible value of n, we determine for each sensor the set of possible next hops with the associated load weights that lead to a fair energy consumption among all sensors in the network. Moreover, we derive the optimal number of transmission powers n that balances the energy consumption among all sensors for each network configuration. In addition to that, it is worth pointing out that our extended routing protocol uses a more realistic time varying channel model that takes into account most of the fundamental characteristics of the underwater acoustic propagation. Analytical results show that further energy saving is achieved by our extended routing scheme. Second, to mitigate the dramatic collision impacts, we design a collision avoidance energy efficient multichannel MAC protocol (MC-UWMAC) for UW-ASNs. MC-UWMAC operates on single slotted control and a set of equal-bandwidth data channels. Control channel slots are dedicated to RTS/CTS handshaking allowing a communicating node pair to agree on the start time of communication on a pre-allocated data channel. In this thesis, we propose two novel coupled slot assignment and data channels allocation procedures without requiring any extra negotiation overhead. Accordingly, each node can initiate RTS/CTS exchange only at its assigned slot calculated using a slot allocation procedure based on a grid virtual partition of the deployment area. Moreover, for each communicating pair of nodes, one data channel is allocated using a channel allocation procedure based on our newly designed concept of singleton- intersecting quorum. Accordingly, each pair of communicating nodes will have at their disposal a unique 2-hop conflict free data channel. Compared with existing MAC protocol, MC-UWMAC reduces experienced collisions and improves network throughput while minimizing energy consumption.
|
Page generated in 0.1366 seconds