Spelling suggestions: "subject:"communications engineering"" "subject:"communications ingineering""
11 |
Wireless digital point to multipoint link utilizing wideband CDMAAmbekar, Sanjay January 1998 (has links)
One of the proposed techniques for multiple access communications for the third generation is code division multiple access (CDMA). This has been shown to be a viable alternative to both TDMA and FDMA. While there does not appear to be a single multiple accessing technique that is superior to others in all situations, there are characteristics of CDMA that give it a distinct advantage over the other multiple access techniques. In CDMA each user is provided with an unique, orthogonal code. If these K codes are orthogonal and uncorrelated with each other, than K independent users can transmit at the same time and in the same radio bandwidth. The receivers decorrelate the information and regenerate the original transmitted signal. It must be noted that the term "Wideband CDMA" is used comparatively to the only existing commercial CDMA system, IS-95 which uses a spectral bandwidth of only 1.2288 MHz. This thesis examines and evaluates a good set of orthonormal codes (orthogonal and normalized to have equal power) and their application to providing accessing for a point to multipoint (PMP) stationary system. The correlation properties, design and constellation properties of these codes are investigated. The system model is then simulated using Systemview and then evaluated in terms of it's bit error rate, user capacity and Erlang with addition of users to the system.
|
12 |
Frequency Analysis of Whistling Atmospherics.Grierson, J.K. January 1957 (has links)
No description available.
|
13 |
Fibre-based devices for next generation photonics communication systemsLai, Yicheng January 2003 (has links)
The future broadband information network will undoubtedly integrate the mobility and flexibility of wireless access systems with the huge bandwidth capacity of photonics solutions to enable a communication system capable of handling the anticipated demand for interactive services. Towards wide coverage and low cost implementations of such broadband wireless photonics communication networks, various aspects of the enabling technologies are continuingly generating intense research interest. Among the core technologies, the optical generation and distribution of radio frequency signals over fibres, and the fibre optic signal processing of optical and radio frequency signals, have been the subjects for study in this thesis. Based on the intrinsic properties of single-mode optical fibres, and in conjunction with the concepts of optical fibre delay line filters and fibre Bragg gratings, a number of novel fibre-based devices, potentially suitable for applications in the future wireless photonics communication systems, have been realised. Special single-mode fibres, namely, the high birefringence (Hi-Bi) fibre and the Er/Yb doped fibre have been employed so as to exploit their merits to achieve practical and cost-effective all-fibre architectures. A number of fibre-based complex signal processors for optical and radio frequencies using novel Hi-Bi fibre delay line filter architectures have been illustrated. In particular, operations such as multichannel flattop bandpass filtering, simultaneous complementary outputs and bidirectional nonreciprocal wavelength interleaving, have been demonstrated. The proposed configurations featured greatly reduced environmental sensitivity typical of coherent fibre delay line filter schemes, reconfigurable transfer functions, negligible chromatic dispersions, and ease of implementation, not easily achievable based on other techniques. A number of unique fibre grating devices for signal filtering and fibre laser applications have been realised. The concept of the superimposed fibre Bragg gratings has been extended to non-uniform grating structures and into Hi-Bi fibres to achieve highly useful grating devices such as overwritten phase-shifted fibre grating structure and widely/narrowly spaced polarization-discriminating filters that are not limited by the intrinsic fibre properties. In terms of the-fibre-based optical millimetre wave transmitters, unique approaches based on fibre laser configurations have been proposed and demonstrated. The ability of the dual-mode distributed feedback (DFB) fibre lasers to generate high spectral purity, narrow linewidth heterodyne signals without complex feedback mechanisms has been illustrated. A novel co-located dual DFB fibre laser configuration, based on the proposed superimposed phase-shifted fibre grating structure, has been further realised with highly desired operation characteristics without the need for costly high frequency synthesizers and complex feedback controls. Lastly, a novel cavity mode condition monitoring and optimisation scheme for short length, linear-cavity fibre lasers has been proposed and achieved. Based on the concept and simplicity of the superimposed fibre laser cavities structure, in conjunction with feedback controls, enhanced output performances from the fibre lasers have been achieved. The importance of such cavity mode assessment and feedback control for optimised fibre laser output performance has been illustrated.
|
14 |
Visible light commuinications using optical OFDMAzhar, Ahmad Helmi January 2013 (has links)
This thesis presents an investigation into designs and developments of indoor visible light communication (VLC) systems using orthogonal frequency division multiplexing (OFDM) schemes. The novel contribution of this thesis is a development of a visible light communication system that incorporates OFDM and imaging-diversity multiple-input multiple-output (MIMO) techniques, which allows robust transmissions on multiple channels at high data rates. The characteristics of VLC systems are presented, one of which is VLC communications channel exhibits high Signal-to-Noise Ratio (SNR). The major constraint however, is the low modulation bandwidth of typical high power white LED sources. The performance of OFDM as a modulation scheme is investigated. OFDM offers the possibility for bit and power loading to increase bandwidth efficiency, as well as a straightforward equalisation in time and frequency domains to compensate the low pass frequency response of the LED. This allows transmission rates of up to ~310Mbps at a BER of 2x10-3 on a single-channel link using 16- QAM DCO-OFDM. Further increase in data rates for this transmission is constrained by the available signal power due to a dynamic range limitation at the receiver. An increase in signal power will results in the OFDM waveform to be clipped, which incurs a clipping noise. MIMO systems offer a linear capacity gain to a number of transmission channels in an ideal configuration. These systems mitigate the dynamic range limitation, as power is divided between multiple channels. The performance of a MIMO transmission system is investigated under the same dynamic range constraint. A 4-channel MIMO transmitter is built using four sets of transmitter components of the single-channel link. An imaging system is used to separate the received optical power onto multiple detectors, and MIMO processing relaxes the requirements for precise mechanical alignments. The experiment has shown that the imaging MIMO system further improves data rates and transmissions of up to ~1.1Gigabit/s at a BER of 2x10-3 are achieved. To the best of the author’s knowledge, this is the highest reported for an indoor VLC MIMO-OFDM transmission. Also presented is an analysis of MIMO system scalability to provide room-wide coverage. Finally, this thesis presents an extended analysis of several other optical OFDM approaches, and concludes with recommendations of future work to increase the data rates of indoor VLC systems.
|
15 |
Diversity strategies for MIMO communication systemsZhang, Fan January 2010 (has links)
This thesis proposes a joint spatial diversity scheme in MIMO systems in order to improve the transmission reliability of the wireless links, thereby to extend the transmission range and increase the information throughput. Cyclic delay diversity (CDD) and antenna selection are employed here for their low complexity, high flexibility, no spectrum efficiency reduction and high compatibility with many existing standards. A bit error performance bound for CDD system with orthogonal frequency division multiplexing and convolutional coding in multipath Rayleigh fading channel is generated, which renders a fundamental understanding of the mechanism of CDD and can be used instructively for CDD system design. A transmit cyclic delay diversity and receive antenna selection (TCDD/RAS) system is proposed here to achieve a performance gain with lower additional complexity and no data rate reduction compared with a transmit orthogonal space-time block coding (OSTBC) system, which is combined with the optimum receive antenna selection scheme. A hybrid system with both OSTBC and CDD in the transmitter and antenna selection in the receiver is also derived to avoid the high complexity requirement and data rate degradation of the OSTBC system as well as the performance loss of the CDD system. A receive antenna selection criterion for the TCDD/RAS system based on the previous performance analysis results is defined, however it demands high computational complexity. Therefore a much simpler and faster selection rule, named maximum minimum post-processing SNR criterion, is generated for the TCDD/RAS system in flat fading channels and another maximum group minimum post-processing SNR selection principle is developed in frequency selective channels. Both of these two selection rules achieve higher diversity gains with lower additional complexity compared with the traditional norm and capacity selection rules. Two relay systems embedded with the TCDD/RAS scheme are also constructed: the MIMO relay system and the cooperative relay system. The joint diversity scheme in the MIMO relay system obtains a higher diversity gain than in the cooperative relay system. Moreover, these two relay systems could be combined to a system with multiple cooperative relay nodes on which multiple antennas are deployed depending on the practical requirement in the future wireless communication systems.
|
16 |
Design and Analysis of Coded Cooperation in Relay NetworksChu, Josephine 06 August 2010 (has links)
This dissertation deals with wireless communications using cooperating relay nodes.
Specifically, this dissertation relaxes two restrictive conditions ubiquitous in the current literature. First, the assumption that relay nodes can perform complex calculations is lifted. Demodulate-encode-forward (DEF) is a low-complexity relaying scheme where the relay is asked only to demodulate, not decode, a source transmission. The implementation of DEF and various methods that can be used with DEF to improve the performance while satisfying the hardware complexity limitations are detailed here. Second, we remove the assumption that the relays either transmit the complete source codeword or not transmit at all. When relays have limited resources, each relay may only be able to transmit part of the source codeword. Fractional cooperation, which allows nodes to transmit a fraction of the source codeword, is proposed and analyzed. Fractional cooperation is also very flexible because coordination between relaying nodes is not required.
A third contribution of this dissertation is the use of the union-Bhattacharyya bound
(UBB) to analyze relay networks. The bound has the significant advantage of accounting for the specifics of the system parameters and coding scheme used. The UBB is
shown here to provide an effective and efficient scheme for relay selection, performance prediction, and system design. It can also be used to distribute relay resources in order to optimize the total energy consumed and error rate performance. A sub-optimal distributed algorithm that can be used to solve the optimization problems is introduced.
|
17 |
Design and Analysis of Coded Cooperation in Relay NetworksChu, Josephine 06 August 2010 (has links)
This dissertation deals with wireless communications using cooperating relay nodes.
Specifically, this dissertation relaxes two restrictive conditions ubiquitous in the current literature. First, the assumption that relay nodes can perform complex calculations is lifted. Demodulate-encode-forward (DEF) is a low-complexity relaying scheme where the relay is asked only to demodulate, not decode, a source transmission. The implementation of DEF and various methods that can be used with DEF to improve the performance while satisfying the hardware complexity limitations are detailed here. Second, we remove the assumption that the relays either transmit the complete source codeword or not transmit at all. When relays have limited resources, each relay may only be able to transmit part of the source codeword. Fractional cooperation, which allows nodes to transmit a fraction of the source codeword, is proposed and analyzed. Fractional cooperation is also very flexible because coordination between relaying nodes is not required.
A third contribution of this dissertation is the use of the union-Bhattacharyya bound
(UBB) to analyze relay networks. The bound has the significant advantage of accounting for the specifics of the system parameters and coding scheme used. The UBB is
shown here to provide an effective and efficient scheme for relay selection, performance prediction, and system design. It can also be used to distribute relay resources in order to optimize the total energy consumed and error rate performance. A sub-optimal distributed algorithm that can be used to solve the optimization problems is introduced.
|
18 |
Cooperative, range-based localization for mobile sensorsSymington, Andrew Colquhoun January 2013 (has links)
This thesis describes the development of an offline, cooperative, range-based localization algorithm for use in settings where there is limited or no access to a positioning infrastructure. Motivating applications include underground animal tracking and indoor pedestrian localization. It is assumed that each sensor performs dead reckoning to estimate its current position, relative to a starting point. Each measurement adds error, causing the position estimate to drift further from the truth with time. The key idea behind the proposed algorithm is to use opportunistic radio contacts to mitigate this drift, and hence localize with greater accuracy. The proposed algorithm first fuses radio and motion measurements into a compact graph. This graph encodes key positions along sensor trajectories as vertices, and distance measurements as edges. In so doing, localization is cast as the graph realization problem: assigning coordinates to vertices, in such a way that satisfies the observed distance measurements. The graph is first analysed to certify whether it defines a localization problem with a unique solution. Then, several algorithms are used to estimate the vertex coordinates. These vertex coordinates are then used to apply piecewise corrections to each sensor's dead reckoning trajectory to mitigate drift. Finally, if sufficient anchors are available, the corrected trajectories are then projected into a global coordinate frame. The proposed algorithm is evaluated in simulation for the problem of indoor pedestrian tracking, using realistic error models. The results show firstly that 2D and 3D problems become provably more localizable as more anchors are used, and as the experiment duration increases. Secondly, it is shown that widely-used graph realization algorithms cannot be used for localization, as the complexity of these algorithms scales polynomially or greater with graph vertex count. Thirdly, it is shown a novel piecewise drift correction algorithm typically works well compared to a competing approach from the literature, but rare and identifiable graph configurations may cause the method to underperform.
|
19 |
Dynamic spectrum sharing for future wireless communicationsJiang, Xueyuan January 2013 (has links)
The spectrum has become one of the most important and scarce resources for future wireless communications. However, the current static spectrum policy cannot meet the increasing demands for spectrum access. To improve spectrum efficiency, dynamic spectrum access (DSA) attempts to allocate the spectrum to users in an intelligent manner. Cognitive radio (CR) is an enabling technology for DSA, and can maximize spectrum utilization by introducing unlicensed or secondary users (SUs) to the primary system. The key component of DSA is dynamic spectrum sharing (DSS), which is responsible for providing efficient and fair spectrum allocation or scheduling solutions among licensed or primary users (PUs) and SUs. This thesis focuses on the design of efficient DSS schemes for the future wireless communication networks. Firstly, based on the coordinated DSS model, this thesis proposes a heterogeneous-prioritized spectrum sharing policy for coordinated dynamic spectrum access networks. Secondly, based on the uncoordinated DSS model, a novel partial spectrum sharing strategy and the cross-layer optimization method have been proposed to achieve efficient spectrum sharing between two licensed networks. Then, a hybrid strategy which combines the overlay and underlay schemes is proposed under uncoordinated DSS model. The proposed analytical methods can provide efficient and accurate modeling to predict the behaviors of the PUs and SUs in DSS systems. This thesis presents the performance prediction of the proposed novel DSS schemes that achieve efficient spectrum sharing for coordinated and uncoordinated future wireless networks.
|
20 |
Optical wireless communications for micro-machinesYuan, Wei Wen January 2011 (has links)
The main objective of this thesis is to develop a communication system that can minimize the micro-machine size and power consumption and maximize the link range and the number of micro-machines that can communicate simultaneously with the base station. Several possible communication systems are compared, including RF communications and active and passive free space optical communications. A directed, half duplex LOS link using a Ferroelectric liquid crystal (FLC) or multiple quantum well (MQW) modulating retroreflector-base passive uplink is then examined in more detail. Two potential geometries are described. In a broad-beam system, light from a source is broadcast to all micro-machines within the field of view (FOV). However, simulations show that the performance is unacceptable for most applications. In a narrow-beam system, light is holographically steered to active micro-machines within the same FOV. Therefore, the link budget has been improved. For a BER not exceeding 10-9, the 850 nm LC narrowbeam system can support maximum range of 146 m at a data rate of 10kbits/s, and the 1525 nm MQW narrowbeam system can support a maximum range of 34 m at a data rate of 10Mbits/s, when the transmitted power in the diffracted beam of the positive first order is 0.5 mW. Experiments have been carried out to verify the model. These were initially carried out with MQW Modulating RetroReflector (MRR). Results were then be used to modify the characteristics of these components in the model. Available components and discrete electronics have been used to set up a simple retro-reflecting link. Experiments have been performed at a limited data rate of 1 kbits/s over a limited range of 1m due to creating a uniform interrogation beam spot, and the active area of the receiver of 1 mm diameter. An algorithm to find the MQW MRR within the FOV is designed and tested.
|
Page generated in 0.1095 seconds