• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Slush-ice berms on the west coast of Alaska: development of a conceptual model of formation based on input from and work with local observers in Shaktoolik, Gambell and Shishmaref, Alaska

Eerkes-Medrano, Laura 19 January 2017 (has links)
Bering Sea storms regularly bring adverse environmental conditions, including large waves and storm surges of up to 4 m, to the west coast of Alaska. These conditions can cause flooding, erosion and other damage that affects marine subsistence activities and infrastructure in the low-lying coastal communities. Storm impacts also include interactions with sea ice in various states: large floes, shore-fast ice, the acceleration of sea-ice formation in frazil or slush state, and the formation of slush-ice berms. Slush-ice berms are accumulations of slush ice that develop under the right wind, water level, water and air temperature, and snow conditions. During a strong wind event, large amounts of slush may be formed and pushed onto the shore, where the slush can accumulate, solidify and protect communities from flooding and erosion. Slush ice berms can also be problematic, restricting access to the coast and presenting other hazards. Residents of Shishmaref and Shaktoolik, communities on the west coast of Alaska, observed the formation of slush-ice berms during storms that occurred in 2007, 2009 and 2011. These formations are important to the communities, and it would be useful to develop the capacity to predict their occurrence. However, scientific work has not been conducted on this phenomenon, with the result that a physical conceptual model describing the formation of slush-ice berms does not exist. In recognition of this need, a project thesis was designed, and had as its main objective to identify and document the environmental and synoptic weather conditions that lead to these types of events, and to develop a descriptive physical conceptual model of slush-ice berm formation. A key to this work was the engagement of traditional knowledge holders and local observers to gather data and information about slush ice and slush-ice berm formation, along with the specific dates when these events took place. This dissertation is organized around three major elements: development of a conceptual model of slush-ice berm formation; presenting the traditional knowledge gathered that led to the development of this model; and documenting the methods and tools used to engage traditional knowledge holders and local observers in this process. In this dissertation, the knowledge from traditional knowledge holders on slush ice formation is presented in the context of feeding into a physical scientific process – specifically, developing a descriptive physical conceptual model of slush-ice berm formation. It is expected that this type of research will contribute to slush-ice berm forecasting which would aid communities’ safety by improving assessment of environmental risk. / Graduate
2

<b>MONITORING CRYPTIC MAMMALIAN SPECIES IN INDIANA USING COMMUNITY-INFORMED MODELING AND ENCLOSED CAMERA TRAPPING</b>

Carsten L White (18422673) 23 April 2024 (has links)
<p dir="ltr">Mammalian mesocarnivores contribute greatly to a proper functioning ecosystem by exerting top-down population control on prey species. While many of these species can be legally trapped or hunted in Indiana, given their responsibilities in the ecosystem, continuous monitoring of Gray fox (Urocyon cinereoargenteus) and Long-tailed weasel (Neogale frenata) by researchers is important to identify potential signs of decline and produce specific management plans. Both U. cinereoargenteus and N. frenata populations are suspected to be declining based on reduced frequencies of observations and harvest. However, each species displays cryptic behaviors that can make observation and effective surveying difficult, which may make the development of accurate assessments of population health unfeasible. To enable better monitoring of populations of these species, I developed a model for potential U. cinereoargenteus habitat and build upon camera trapping survey methods for N. frenata in this project. I used community surveying tools in a presence-only software (e.g., MaxEnt) to develop a consensus model for U. cinereoargenteus potential habitat. I identified five landscape-based covariates (distance to mixed and evergreen forest, distance to low urban cover, distance to shrub/scrub cover, and percent total forest cover per km2 ) that contributed the greatest to predicting the presence of the species. The top models in my project indicated a positive relationship between predicted U. cinereoargenteus presence and forested land cover. Additionally, predicted presence was high when the distance to low urban and shrub/scrub cover was low. In the Southern portion of Indiana predicted areas of presence occurred where larger forest patches exist. This differed from the Central and Northern portions of the state where smaller fragmented forest patches exist. In these areas, predicted areas of presence predominantly occurred near shrub/scrub or low urban cover. These findings will allow researchers to target specific areas for effective surveying and develop species conservation strategies. I also evaluated the ability of three enclosed camera trapping systems (AHDriFT system, Mostela system, and MoHDriFT system) to detect N. frenata. These camera systems have been designed to detect N. frenata and potential prey items, doing so successfully in past studies. I deployed trapping systems in three sites throughout Northeast Indiana from February to November 2023. Camera systems collected data during the project period during unbaited and baited (using sardines) survey periods. During my project, I observed three unique detections of N. frenata, all 9 of which were in the AHDriFT system during unbaited survey periods (P = 0.99; Z = -0.005). During these survey periods when N. frenata were detected, the AHDriFT system accounted for greater prey visitation and prey species abundance than the other two trapping systems (P < 0.01; F = 12). The ability to attract large amounts of prey species while successfully detecting N. frenata in this project may point to the AHDriFT system as the best camara trapping system suited for monitoring this cryptic species. The results from my project provide researchers and state agencies with input for monitoring these two cryptic species. With both species in suspected declines, the research conducted in the two chapters can contribute to portions of future species management plans. By targeting specific areas with predicted suitable habitat for U. cinereoargenteus, agencies can better allocate funds and conduct more extensive species research in Indiana. Likewise, by deploying the AHDriFT system, researchers in Indiana can cost-effectively monitor, not only N. frenata populations, but also small mammal and herp communities with ease. The research in this project provides researchers and state agencies in Indiana with new tools and insights in monitoring these cryptic species that are critical mesocarnivores in the state’s ecosystem.</p>

Page generated in 0.0833 seconds