Spelling suggestions: "subject:"compaction"" "subject:"decompaction""
21 |
Effects of intense, short-term traffic on soil physical properties and turfgrass growthBoufford, Robert William January 2010 (has links)
Photocopy of typescript. / Digitized by Kansas Correctional Industries
|
22 |
Understanding Mississippi Delta Subsidence through Stratigraphic and Geotechnical Analysis of a Continuous Holocene Core at a Subsidence SuperstationJanuary 2018 (has links)
acase@tulane.edu / Land-surface subsidence can be a major contributor to the relative sea-level rise that is threatening many coastal communities. Loosely constrained subsidence rate estimates across the Mississippi Delta make it difficult to differentiate between subsidence mechanisms and complicate modeling efforts. New data from a nearly 40 m long, 12 cm diameter core taken during the installation of a subsidence monitoring superstation near the Mississippi River, southeast of New Orleans, provides insight into the stratigraphic and geotechnical properties of the Holocene succession at that site. Stratigraphically, the core can be grouped into four units. The top 12 m is dominated by clastic overbank sediment with interspersed organic-rich layers. The middle section, 12-35 m, consists predominately of mud, and the bottom section, 35-38.7 m, is marked by a transition into a Holocene-aged basal peat (~11.3 ka) which overlies densely packed Pleistocene sediment. Radiocarbon and OSL ages are used to calculate vertical displacement and averages subsidence rates as far back as ~3.5 ka, yielding values as high as 8.0 m of vertical displacement (up to 2.34 mm/yr) as obtained from a transition from mouth bar to overbank deposits. We infer that most of this was due to compaction of the thick, underlying mud package. The top ~80 cm of the core is a peat that represents the modern marsh surface and is inducing minimal surface loading. This is consistent with the negligible shallow subsidence rate as seen at a nearby rod-surface elevation table – marker horizon station. Future compaction scenarios for the superstation can be modeled from the stratigraphic and geotechnical properties of the core, including the loading from the planned Mid-Barataria sediment diversion which is expected to dramatically change the coastal landscape in this region. / 1 / Jonathan G Bridgeman
|
23 |
Evaluation of compaction sensitivity of Saskatchewan asphalt mixesSalifu, Aziz 15 July 2010
Saskatchewan Ministry of Highway and Infrastructure (SMHI) currently use the Marshall compaction method for the preparation of hot-mix asphalt laboratory samples. Due to increases in commercial truck traffic on most provincial highways, there has been an observed increasing trend in the occurrence of permanent deformation within the hot-mix asphalt concrete (HMAC) layer. One of the most important material properties found to influence the resistance of HMAC to structural permanent deformation is volumetric air voids within the mix.<p>
End product air voids within a hot mix asphalt concrete pavement in the field is simulated by the method of compaction used during the laboratory design process. Based on findings of the Strategic Highway Research Program (SHRP), the gyratory compactor is believed to better simulate field compaction of asphalt mixes at the time of construction, as well as better predict mix consolidation over the field performance period. However, the SuperpaveTM sample preparation protocol specifies a fixed angle of gyratory compaction, which may not be the optimal parameters to evaluate Saskatchewan hot-mix asphalt concrete mixes during the laboratory mix design phase.<p>
The primary objective of this research was to investigate the relationship between laboratory characterization and field evaluation of Saskatchewan SPS-9A asphalt mixes across alternate laboratory compaction protocols. A second objective of this research was to quantify the effect of gyratory and Marshall compaction energy on the physical and mechanical properties of Saskatchewan SPS-9A asphalt mixes in the laboratory. The third objective of this research was to compare field ground penetrating radar dielectric permittivity profiles and rutting performance across Saskatchewan SPS-9A test sections.<p>
The hypothesis of this research is that gyratory laboratory compaction will provide improved sensitivity in the characterization of physical asphaltic mix properties. It is also hypothesized that varied volumetric properties of HMAC mixes influence the mechanistic triaxial frequency sweep material properties of both conventional Saskatchewan and SuperpaveTM dense graded HMAC mixes.<p>
The laboratory portion of this research included volumetric and mechanical properties of the seven Saskatchewan SPS-9A asphaltic mixes.
The scope of this research included an investigation of the Saskatchewan Specific Pavement Study-9A (SPS-9A) asphalt mixes constructed in Radisson Saskatchewan in 1996. Physical volumetric properties as well as mechanistic triaxial frequency sweep properties were characterized across all seven Radisson SPS-9A mixes. Rutting after ten years of performance in the field was quantified as well as in situ ground penetrating radar dielectric permittivities of the Radisson SPS-9A test sections.<p>
Based on the findings of the study, there was a significant reduction in VTM with an increase in Marshall compaction energy from 50 to 75 blows. Marshall stability was observed to be higher at 75 blow compared to 50 blows across the test sections.<p>
Similarly, with regards to gyratory sample preparation, there was an observed reduction in VTM with an increase in gyratory compaction energy. VTM of SuperpaveTM mixes were higher than VTM SMHI Marshall mixes. VTM of the SuperpaveTM mixes were above acceptable SMHI limits at all angles of gyration at Ndesign. SuperpaveTM gyratory compactor accurately predicted field air voids of the Radisson SPS-9A asphalt after ten years of traffic loading at 2.00° angle of gyration.<p>
In general, this research showed significant sensitivity of volumetric material properties across both Marshall and gyratory compaction energy.<p>
This research also demonstrated that there was an improvement in the triaxial mechanistic material properties of the Radisson SPS-9A HMAC mixes with an increase in gyratory compaction energy. Dynamic moduli across all test section mixes increased with an increase in gyratory compaction energy. Similarly, it was shown that Poissons ratio generally increased with an increase in compaction energy across all test sections. Phase angle also increased with an increase in gyratory compaction energy. Radial microstrain (RMS) displayed the most significant sensitivity to increased gyratory compaction energy.<p>
This research concluded that compaction energy in the laboratory can significantly influence the volumetric and mechanistic properties of hot-mix asphalt concrete mixes. As indicated by the field performance of the Radisson SPS-9A test sections, it is known that both volumetric and mechanistic properties can influence field performance. Mechanical material properties of HMAC may be improved by increasing compaction energy, as long as volumetric properties are adhered to. The use of rapid triaxial frequency sweep testing demonstrated the ability to characterize mechanistic material properties as a function of varied compaction energy.<p>
Based on the findings of this research, it is recommended that Saskatchewan asphalt mixes, both Marshall and SuperpaveTM types, be characterized using gyratory compaction with 2.00° angle of gyration and the SHRP specified number of gyrations. Further, the gyratory compacted samples provide the ability to characterize the mechanistic material constitutive properties of asphaltic mixes for mechanistic based road structural design purposes.<p>
Future research should evaluate the relationship of laboratory material properties to the field performance of various Saskatchewan asphalt mixes across various field state conditions.
|
24 |
Evaluation of compaction sensitivity of Saskatchewan asphalt mixesSalifu, Aziz 15 July 2010 (has links)
Saskatchewan Ministry of Highway and Infrastructure (SMHI) currently use the Marshall compaction method for the preparation of hot-mix asphalt laboratory samples. Due to increases in commercial truck traffic on most provincial highways, there has been an observed increasing trend in the occurrence of permanent deformation within the hot-mix asphalt concrete (HMAC) layer. One of the most important material properties found to influence the resistance of HMAC to structural permanent deformation is volumetric air voids within the mix.<p>
End product air voids within a hot mix asphalt concrete pavement in the field is simulated by the method of compaction used during the laboratory design process. Based on findings of the Strategic Highway Research Program (SHRP), the gyratory compactor is believed to better simulate field compaction of asphalt mixes at the time of construction, as well as better predict mix consolidation over the field performance period. However, the SuperpaveTM sample preparation protocol specifies a fixed angle of gyratory compaction, which may not be the optimal parameters to evaluate Saskatchewan hot-mix asphalt concrete mixes during the laboratory mix design phase.<p>
The primary objective of this research was to investigate the relationship between laboratory characterization and field evaluation of Saskatchewan SPS-9A asphalt mixes across alternate laboratory compaction protocols. A second objective of this research was to quantify the effect of gyratory and Marshall compaction energy on the physical and mechanical properties of Saskatchewan SPS-9A asphalt mixes in the laboratory. The third objective of this research was to compare field ground penetrating radar dielectric permittivity profiles and rutting performance across Saskatchewan SPS-9A test sections.<p>
The hypothesis of this research is that gyratory laboratory compaction will provide improved sensitivity in the characterization of physical asphaltic mix properties. It is also hypothesized that varied volumetric properties of HMAC mixes influence the mechanistic triaxial frequency sweep material properties of both conventional Saskatchewan and SuperpaveTM dense graded HMAC mixes.<p>
The laboratory portion of this research included volumetric and mechanical properties of the seven Saskatchewan SPS-9A asphaltic mixes.
The scope of this research included an investigation of the Saskatchewan Specific Pavement Study-9A (SPS-9A) asphalt mixes constructed in Radisson Saskatchewan in 1996. Physical volumetric properties as well as mechanistic triaxial frequency sweep properties were characterized across all seven Radisson SPS-9A mixes. Rutting after ten years of performance in the field was quantified as well as in situ ground penetrating radar dielectric permittivities of the Radisson SPS-9A test sections.<p>
Based on the findings of the study, there was a significant reduction in VTM with an increase in Marshall compaction energy from 50 to 75 blows. Marshall stability was observed to be higher at 75 blow compared to 50 blows across the test sections.<p>
Similarly, with regards to gyratory sample preparation, there was an observed reduction in VTM with an increase in gyratory compaction energy. VTM of SuperpaveTM mixes were higher than VTM SMHI Marshall mixes. VTM of the SuperpaveTM mixes were above acceptable SMHI limits at all angles of gyration at Ndesign. SuperpaveTM gyratory compactor accurately predicted field air voids of the Radisson SPS-9A asphalt after ten years of traffic loading at 2.00° angle of gyration.<p>
In general, this research showed significant sensitivity of volumetric material properties across both Marshall and gyratory compaction energy.<p>
This research also demonstrated that there was an improvement in the triaxial mechanistic material properties of the Radisson SPS-9A HMAC mixes with an increase in gyratory compaction energy. Dynamic moduli across all test section mixes increased with an increase in gyratory compaction energy. Similarly, it was shown that Poissons ratio generally increased with an increase in compaction energy across all test sections. Phase angle also increased with an increase in gyratory compaction energy. Radial microstrain (RMS) displayed the most significant sensitivity to increased gyratory compaction energy.<p>
This research concluded that compaction energy in the laboratory can significantly influence the volumetric and mechanistic properties of hot-mix asphalt concrete mixes. As indicated by the field performance of the Radisson SPS-9A test sections, it is known that both volumetric and mechanistic properties can influence field performance. Mechanical material properties of HMAC may be improved by increasing compaction energy, as long as volumetric properties are adhered to. The use of rapid triaxial frequency sweep testing demonstrated the ability to characterize mechanistic material properties as a function of varied compaction energy.<p>
Based on the findings of this research, it is recommended that Saskatchewan asphalt mixes, both Marshall and SuperpaveTM types, be characterized using gyratory compaction with 2.00° angle of gyration and the SHRP specified number of gyrations. Further, the gyratory compacted samples provide the ability to characterize the mechanistic material constitutive properties of asphaltic mixes for mechanistic based road structural design purposes.<p>
Future research should evaluate the relationship of laboratory material properties to the field performance of various Saskatchewan asphalt mixes across various field state conditions.
|
25 |
High Quality Compact Delay Test GenerationWang, Zheng 2010 May 1900 (has links)
Delay testing is used to detect timing defects and ensure that a circuit meets its
timing specifications. The growing need for delay testing is a result of the advances in
deep submicron (DSM) semiconductor technology and the increase in clock frequency.
Small delay defects that previously were benign now produce delay faults, due to
reduced timing margins. This research focuses on the development of new test methods
for small delay defects, within the limits of affordable test generation cost and pattern
count.
First, a new dynamic compaction algorithm has been proposed to generate
compacted test sets for K longest paths per gate (KLPG) in combinational circuits or
scan-based sequential circuits. This algorithm uses a greedy approach to compact paths
with non-conflicting necessary assignments together during test generation. Second, to
make this dynamic compaction approach practical for industrial use, a recursive learning
algorithm has been implemented to identify more necessary assignments for each path,
so that the path-to-test-pattern matching using necessary assignments is more accurate.
Third, a realistic low cost fault coverage metric targeting both global and local delay
faults has been developed. The metric suggests the test strategy of generating a different
number of longest paths for each line in the circuit while maintaining high fault coverage.
The number of paths and type of test depends on the timing slack of the paths under this
metric. Experimental results for ISCAS89 benchmark circuits and three industry circuits
show that the pattern count of KLPG can be significantly reduced using the proposed
methods. The pattern count is comparable to that of transition fault test, while achieving
higher test quality. Finally, the proposed ATPG methodology has been applied to an
industrial quad-core microprocessor. FMAX testing has been done on many devices and
silicon data has shown the benefit of KLPG test.
|
26 |
Soil compaction caused by timber harvesting in central Appalachian hardwood forestsJones, Mark W., January 2003 (has links)
Thesis (M.S.)--West Virginia University, 2003. / Title from document title page. Document formatted into pages; contains viii, 52 p. : ill. (some col.), maps (some col.). Includes abstract. Includes bibliographical references (p. 47-52).
|
27 |
Quantifying using centrifuge of variables governing the swelling of claysWalker, Trevor Meade 29 October 2012 (has links)
Austin, Texas consists of highly expansive soils that have caused failures in many structures. Minimizing the detrimental effects of expansive soils on structures requires that the swelling of these soil(s) is quantified accurately, efficiently, and timely. A testing procedure was developed to directly measure soil swelling using centrifuge technology by Plaisted, 2009. This testing procedure was developed in order to reduce the test duration while generating more swelling data relative to conventional tests that directly measure swell. However, the new procedure was incapable of obtaining in-flight swell data, resulting in the need to develop a procedure to directly measure swell during centrifugation.
The objectives of this study were to update the testing procedure developed by Plaisted, 2009 by incorporating the use of an in-flight Data Acquisition System (DAS) that would produce accurate and repeatable results; and use the updated testing procedure to quantify the effects of compaction conditions on swelling for three expansive soils in the Austin area (Eagle Ford Shale, Houston Black Clay, and Taylor Clay). A DAS consisting of linear position sensors, analog to digital converters, JeeNode Arduinos, and an accelerometer was developed and installed within the centrifuge. Specimens were compacted at various water contents, and densities, and subjected to different g-levels. The effects of g-level, compaction water content, compaction dry unit weight, and soil type were determined by comparing the 34 hour swell percentages for the compacted specimens.
The results of this study showed that in-flight monitoring of clay swelling could be successfully implemented in a comparatively small centrifuge, and that the data collected from the DAS was accurate and repeatable. Swelling of tested soils was found to be sensitive to changes in water content around optimum, with specimens compacted wet of optimum swelling less than specimens compacted dry of optimum. A 6% increase in relative compaction was found to negligibly affect the swelling. Finally, variations in confinement and compaction conditions were found to have a greater effect on swelling for soils that are more expansive in nature compared to soils less expansive in nature. / text
|
28 |
The generation of compound nominals to represent the essence of text : the COMMIX systemNorris, Jennifer Vivien January 1998 (has links)
This thesis concerns the COMMIX system, which automatically extracts information on what a text is about, and generates that information in the highly compacted form of compound nominal expressions. The expressions generated are complex and may include novel terms which do not appear themselves in the input text. From the practical point of view, the work is driven by the need for better representations of content: for representations which are shorter and more concise than would appear in an abstract, yet more informative and representative of the actual aboutness than commonly occurs in indexing expressions and key terms. This additional layer of representation is referred to in this work as pertaining to the essence of a particular text. From a theoretical standpoint, the thesis shows how the compound nominal as a construct can be successfully employed in these highly informative representations. It involves an exploration of the claim that there is sufficient semantic information contained within the standard dictionary glosses for individual words to enable the construction of useful and highly representative novel compound nominal expressions, without recourse to standard syntactic and statistical methods. It shows how a shallow semantic approach to content identification which is based on lexical overlap can produce some very encouraging results. The methodology employed, and described herein, is domain-independent, and does not require the specification of templates with which the input text must comply. In these two respects, the methodology developed in this work avoids two of the most common problems associated with information extraction. As regards the evaluation of this type of work, the thesis introduces and utilises the notion of percentage attainment value, which is used in conjunction with subjects' opinions about the degree to which the aboutness terms succeed in indicating the subject matter of the texts for which they were generated.
|
29 |
The Strength and stiffness of geocell support packs dh [electronic resource] /Weseloo, Johan. January 2004 (has links)
Thesis (Ph. D.)(Civil Eng.)--University of Pretoria, 2004. / Summaries in English and Afrikaans. Includes bibliographical references.
|
30 |
Characterization and modeling of land subsidence due to groundwater withdrawals from the confined aquifers of the Virginia Coastal PlainPope, Jason Philip 14 June 2002 (has links)
Measurement and analysis of aquifer-system compaction have been used to characterize aquifer and confining unit properties when other techniques such as flow modeling have been ineffective at adequately quantifying storage properties or matching historical water levels in environments experiencing land subsidence. In the southeastern Coastal Plain of Virginia, high-sensitivity borehole pipe extensometers were used to measure 24.2 mm of total compaction at Franklin from 1979 to 1995 (an average of 1.5 mm/yr) and 50.2 mm of total compaction at Suffolk from 1982 to 1995 (an average of 3.7 mm/yr). Analysis of the extensometer data reveals that the small rates of aquifer-system compaction appear to be correlated with withdrawals of water from confined aquifers. One-dimensional vertical compaction modeling indicates that the measured compaction is the result of nonrecoverable hydrodynamic consolidation of the fine-grained confining units and interbeds as well as recoverable compaction and expansion of coarse-grained aquifer units. The modeling results also provide useful information about specific storage and vertical hydraulic conductivity of individual hydrogeologic units. The results of this study enhance the understanding of the complex Coastal Plain aquifer system and will be useful in future modeling and management of ground water in this region. / Master of Science
|
Page generated in 0.0825 seconds