Spelling suggestions: "subject:"compaction control"" "subject:"compaction coontrol""
1 |
Use of a BCD for compaction controlLi, Yanfeng 01 November 2005 (has links)
Compaction of soil is essential in the construction of highways, airports, buildings, and bridges. Typically compaction is controlled by measuring the dry density and the water content of the compacted soil and checking that target values have been achieved. There is a current trend towards measuring the soil modulus instead or in addition to density. The reasons are that the density measurements are made using nuclear density meter, an undesirable tool in today??s political environment and that pavement design uses moduli as an input parameter. Although there are many apparatus available to measure soil modulus in the field such as Falling Weight Deflectometer, Dynamic Cone Penetrometer and Seismic Pavement Analyzer, a light weight and easy to use device which can measure the soil modulus fast and accurately is in great need. Briaud Compaction Device (BCD) is a portable device which can measure a soil modulus in several seconds. The principle of the BCD is to use the bending of a plate resting on the ground surface as an indicator of the modulus of the soil below. Numerical simulations show that within a certain range, the soil modulus is simply related to the plate bending. Strain gauges are glued on the top of the plate of BCD and a double half Wheatstone bridge is used to measure the strain. BCD tests were done in parallel with plate tests of the same size. A good correlation was found between the ratio of the plate pressure over the bending strain measured with a BCD and the reload soil modulus obtained from the plate test. This correlation can be incorporated into the BCD processor to display the soil modulus directly. To transit from dry density based compaction control to modulus based compaction control, BCD tests were also performed in the laboratory on top of a soil sample compacted inside the Proctor mold followed by plate tests. That way, a soil modulus versus water content curve is developed which parallels the approach for the dry density versus water content. The soil modulus versus water content curve can be used to provide the target values for compaction control in the field.
|
2 |
Use of a BCD for compaction controlLi, Yanfeng 01 November 2005 (has links)
Compaction of soil is essential in the construction of highways, airports, buildings, and bridges. Typically compaction is controlled by measuring the dry density and the water content of the compacted soil and checking that target values have been achieved. There is a current trend towards measuring the soil modulus instead or in addition to density. The reasons are that the density measurements are made using nuclear density meter, an undesirable tool in today??s political environment and that pavement design uses moduli as an input parameter. Although there are many apparatus available to measure soil modulus in the field such as Falling Weight Deflectometer, Dynamic Cone Penetrometer and Seismic Pavement Analyzer, a light weight and easy to use device which can measure the soil modulus fast and accurately is in great need. Briaud Compaction Device (BCD) is a portable device which can measure a soil modulus in several seconds. The principle of the BCD is to use the bending of a plate resting on the ground surface as an indicator of the modulus of the soil below. Numerical simulations show that within a certain range, the soil modulus is simply related to the plate bending. Strain gauges are glued on the top of the plate of BCD and a double half Wheatstone bridge is used to measure the strain. BCD tests were done in parallel with plate tests of the same size. A good correlation was found between the ratio of the plate pressure over the bending strain measured with a BCD and the reload soil modulus obtained from the plate test. This correlation can be incorporated into the BCD processor to display the soil modulus directly. To transit from dry density based compaction control to modulus based compaction control, BCD tests were also performed in the laboratory on top of a soil sample compacted inside the Proctor mold followed by plate tests. That way, a soil modulus versus water content curve is developed which parallels the approach for the dry density versus water content. The soil modulus versus water content curve can be used to provide the target values for compaction control in the field.
|
3 |
A new saturation-based framework for compaction quality controlMiller, Kevin Clark 08 August 2023 (has links) (PDF)
Field compaction control is arguably the most common yet critical quality control procedure in geotechnical engineering. Since the early 1930s, the systematic process for performing quality control of compacted soils has often been performed by measuring the in-place dry unit weight (or density) and as-compacted soil moisture content after placement in a fill. However, the current practice overlooks several facts resulting from comparing soil prepared and compacted in the laboratory to soils placed and compacted in the field. These issues include comparing the compaction energy in the lab versus what is applied in the field, and the behavior of saturated soils in the laboratory to the performance of unsaturated soils in the field. To address some of these gaps, this study presents a new saturation-based framework for compaction quality control. The aim of this new framework is to reduce the uncertainties and assumptions of the compaction control process and provide practicing engineers with further insight into the key engineering attributes of compacted soils. The proposed saturation-based approach compares a degree of saturation difference to a normalized dry unit weight ratio, making saturation upon compaction the controlling diagnostic variable and the focus of the monitoring effort. In essence, the optimal compaction conditions will be referenced to a characteristic saturation state near 80%. Compared to the conventional quality control system for field compaction, the saturation-based approach is developed with the same field and reference data collected for most earth fill projects. The results of this approach enhance the engineering judgment required to match the laboratory reference values to the field conditions. For illustration purposes, the proposed saturation-based framework is applied to compaction control data of a large earth dam and compared against the conventional method side-by-side. The proposed framework builds on the unique physical features of the "family of curves" and expands the ability of the user to select the compaction criterion using that relationship to produce project design properties. Overall, the proposed approach enhances the knowledge of the physical behavior of compacted soils and provides a more comprehensive understanding of the long-term performance of compacted fills.
|
4 |
Grundlagen zur Optimierung der RütteldruckverdichtungHell, Marylin 24 June 2024 (has links)
Das Thema der Optimierung der Rütteldruckverdichtung ist seit vielen Jahrzehnten Gegenstand der Forschung. In dieser Arbeit werden die bisher untersuchten Mechanismen und Erkenntnisse zusammengefasst. Es ergeben sich jedoch einige Fragestellungen, aus denen sich die Forschungsfragen der vorliegenden Arbeit ableiten lassen. Die meisten Erkenntnisse sind theoretischer Natur und vieles wurde in der Praxis noch nicht nachgewiesen. Aus diesem Grund wurde ein Modellversuchsstand aufgebaut, der die Rütteldruckverdichtung mit einem Modellrüttler realitätsnah abbilden kann. Die darin eingebaute Sensorik wird im Rahmen einer Parameterstudie eingesetzt, bei der Standardversuche zur Rütteldruckverdichtung mit Parametervariationen durchgeführt werden. Durch die Parameterstudie konnten einige Vermutungen, die bisher nur theoretischer Natur waren oder aus der praktischen Anwendung stammen, erstmals nachgewiesen werden. Dazu gehören ein großer Einfluss der Schwingwegamplitude auf die Verdichtung sowie ein starker Einfluss der eingestellten Verdichtungsfrequenz. Diese Parameter sollten optimiert und nicht maximiert werden, da dies die Verdichtung wieder verschlechtern kann. Darüber hinaus hat sich der Vorlaufwinkel als geeigneter Regelparameter erwiesen, da er ein reproduzierbares Verhalten in gleichen Tiefenlagen zeigt. Weiter zeigt er das Ende eines Verdichtungsschritts in der jeweiligen Tiefenlage an, wenn er einen nahezu konstanten Wert erreicht. Zudem konnte durch den Vergleich verschiedener Verdichtungsverfahren die schrittweise Verdichtung gegenüber dem Pilgerschrittverfahren und dem konstanten Ziehen als beste Methode identifiziert werden. Auf Basis der Auswertungen wurde ein neuer Regelparameter eingeführt. Mit Hilfe des Sensorphasenwinkels kann das Bewegungsverhalten des Rüttlers erfasst und ein unrundes Bewegungsverhalten erkannt werden. Des Weiteren konnte ein Einfluss der Spülmethode, des Spüldurchsatzes und der Kornzertrümmerung festgestellt werden. Eine optimierte Verdichtungskontrolle und ein optisches Verfahren zur qualitativen Bewertung der Verdichtung wurden erstmals eingesetzt. Kern der vorliegenden Arbeit ist die Optimierung der Rütteldruckverdichtung. Hierzu konnten geeignete Regelparameter identifiziert und in Form eines multikriteriellen Regelalgorithmus umgesetzt werden. Dieser wurde für das Eindringen und Heben vorgeschlagen und erstmals für die Verdichtung angewendet. Der Modellrüttler passte seine Frequenz anhand der aufgezeichneten Sensordaten an die umgebenden Bodeneigenschaften an. Die dabei verwendeten Regelparameter wurden variiert und mit Großversuchen verglichen, um Wege und Potentiale aufzuzeigen, die im Großgerät Anwendung finden sollten. Die vorliegende Arbeit legt den Grundstein, um die gewonnenen Erkenntnisse in weiteren Modellversuchen anzuwenden und die neu entstandenen Forschungsfragen zu beantworten. Dadurch kann die Rütteldruckverdichtung optimiert werden, um in Zukunft ressourcenschonender und intelligenter eingesetzt zu werden.
|
Page generated in 0.0883 seconds