• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fizzy: feature subset selection for metagenomics

Ditzler, Gregory, Morrison, J. Calvin, Lan, Yemin, Rosen, Gail L. January 2015 (has links)
BACKGROUND: Some of the current software tools for comparative metagenomics provide ecologists with the ability to investigate and explore bacterial communities using α- & β-diversity. Feature subset selection - a sub-field of machine learning - can also provide a unique insight into the differences between metagenomic or 16S phenotypes. In particular, feature subset selection methods can obtain the operational taxonomic units (OTUs), or functional features, that have a high-level of influence on the condition being studied. For example, in a previous study we have used information-theoretic feature selection to understand the differences between protein family abundances that best discriminate between age groups in the human gut microbiome. RESULTS: We have developed a new Python command line tool, which is compatible with the widely adopted BIOM format, for microbial ecologists that implements information-theoretic subset selection methods for biological data formats. We demonstrate the software tools capabilities on publicly available datasets. CONCLUSIONS: We have made the software implementation of Fizzy available to the public under the GNU GPL license. The standalone implementation can be found at http://github.com/EESI/Fizzy.
2

Comparaison de novo de données de séquençage issues de très grands échantillons métagénomiques : application sur le projet Tara Oceans / De novo comparision of huge metagenomic experiments coming from NGS technologies : application on Tara Oceans project

Maillet, Nicolas 19 December 2013 (has links)
La métagénomique vise à étudier le contenu génétique et génomique d'un échantillon provenant d'un environnement naturel. Cette discipline récente s'attache à étudier les génomes de différents organismes provenant d'un même milieu. La métagénomique pose de nouvelles questions, tant d'un point de vue biologique qu'informatique. Les masses de données générées par les études métagénomiques et la complexité des milieux étudiés, nécessitent de développer de nouvelles structures de données et de nouveaux algorithmes dédiés. Parmi les différentes approches existantes en métagénomique, la métagénomique comparative consiste à comparer plusieurs métagénomes afin d'en connaître les divers degrés de similarité. Lorsque cette comparaison se base uniquement sur le contenu brut des échantillons, sans faire appel à des connaissances externes, on parle de métagénomique comparative de novo. L'objectif des travaux que nous proposons est de développer une méthode permettant d'extraire les séquences similaires de deux jeux de données métagénomiques, où chaque jeu peut être composé de centaines de millions de courtes séquences. La comparaison proposée consiste à identifier les séquences d'un premier jeu similaires à au moins une séquence d'un second jeu. Afin d'être rapide et économe en mémoire, l'implémentation de notre méthode a nécessité la conception d'une nouvelle structure d'indexation, basée sur le filtre de bloom. Le logiciel final, nommé Compareads, a une consommation mémoire faible (de l'ordre de quelques go) et peut calculer l'intersection de deux échantillons de 100 millions de séquences chacun en une dizaine d'heures. Notre méthode est une heuristique qui génère un faible taux de faux positifs. Le logiciel Compareads est dédié à l'analyse de grands jeux de données métagénomiques. À l'heure actuelle, il est le seul outil capable de comparer de tels jeux. Compareads a été appliqué sur plusieurs projets métagénomiques. Notre outil produit des résultats robustes, biologiquement exploitables et en accord avec diverses méthodes fondamentalement différentes. Il est actuellement utilisé de manière intensive sur les échantillons provenant de l'expédition tara oceans. Sur ce projet, notre méthode à permis de mettre en évidence que les grands systèmes océaniques influent sur la répartition globale des micro-organismes marins. / Metagenomics studies overall genomic information of multiple organisms coming from the same biotope. The information is generally provided by next generation sequencing technologies (NGS). Typical data are samples of short reads (i.e. reads of few hundred base pairs). To study such metagenomics information, we developed an original method for extracting similarities between two samples of reads. More precisely, this approach locates the set of common reads present in two samples. In order to fit with current memory capacities and to be time efficient, we used a modified Bloom filter data structure. Finding the common reads between multiple samples and crossing this information with the location of samples leads to visualize some biological processes like ubiquitous species or effect of water stream caring some species. Finally, the tool can also be used as a filter on metagenomics datas to remove for example only one specie. Our software, Compareads, is actually used on the Tara Oceans project where it shows that global dynamic of oceans seems to play a part on the dispersion of marine microorganisms.

Page generated in 0.0809 seconds