Spelling suggestions: "subject:"complex bounds"" "subject:"3complex bounds""
1 |
Renormalização de aplicações unimodais com ordem crítica próxima a 2N / Renormalization of unimodal maps with critical order to 2NTorres, Judith Hayde Cruz 12 November 2007 (has links)
Nós estudamos a dinâmica do operador de renormalização atuando no espaço de pares (?, t), onde ? é um difeomorfismo e t ? [0, 1], interpretados como aplicações unimodais ? o qt, onde qt(x) = -2t|x|? + 2t - 1. Estabelecemos cotas complexas a priori para pares suficientemente renormalizáveis com combinatória limitada e então a utilizamos para mostrar que quando o expoente crítico ? está próximo de um número par, o operador de renormalização tem um único ponto fixo, o qual é hiperbólico e possui uma variedade estável de codimensão um que contém todos os pares infinitamente renormalizáveis / We study the dynamics of the renormalization operator acting on the space of pairs (?, t), where ? is a diffeomorphism and t ? [0, 1], interpretated as unimodal maps ? o qt, where qt(x) = -2t|x|? + 2t - 1. We prove the so called complex bounds for sufficiently renormalizable pairs with bounded combinatorics. This allows us to show that if the critical exponent ? is close to an even number then the renormalization operator has a unique fixed point. Furthermore this fixed point is hyperbolic and its codimension one stable manifold contains all infinitely renormalizable pairs
|
2 |
Renormalização de aplicações unimodais com ordem crítica próxima a 2N / Renormalization of unimodal maps with critical order to 2NJudith Hayde Cruz Torres 12 November 2007 (has links)
Nós estudamos a dinâmica do operador de renormalização atuando no espaço de pares (?, t), onde ? é um difeomorfismo e t ? [0, 1], interpretados como aplicações unimodais ? o qt, onde qt(x) = -2t|x|? + 2t - 1. Estabelecemos cotas complexas a priori para pares suficientemente renormalizáveis com combinatória limitada e então a utilizamos para mostrar que quando o expoente crítico ? está próximo de um número par, o operador de renormalização tem um único ponto fixo, o qual é hiperbólico e possui uma variedade estável de codimensão um que contém todos os pares infinitamente renormalizáveis / We study the dynamics of the renormalization operator acting on the space of pairs (?, t), where ? is a diffeomorphism and t ? [0, 1], interpretated as unimodal maps ? o qt, where qt(x) = -2t|x|? + 2t - 1. We prove the so called complex bounds for sufficiently renormalizable pairs with bounded combinatorics. This allows us to show that if the critical exponent ? is close to an even number then the renormalization operator has a unique fixed point. Furthermore this fixed point is hyperbolic and its codimension one stable manifold contains all infinitely renormalizable pairs
|
Page generated in 0.0293 seconds