Spelling suggestions: "subject:"complex surveys"" "subject:"3complex surveys""
1 |
Nonparametric Kernel Estimation Methods Using Complex Survey DataClair, Luc 06 1900 (has links)
This dissertation provides a thorough overview of the use of nonparametric estimation methods for analyzing data collected by complex sampling plans. Applied econometric analysis is often performed using data collected from large-scale surveys, which use complex sampling plans in order to reduce administrative costs and increase the estimation efficiency for subgroups of the population. These sampling plans result in unequal inclusion probabilities across units in the population. If one is interested in estimating descriptive statistics, it is highly recommended that one uses an estimator that weights each observation by the inverse of the unit's probability of being included in the sample. If one is interested in estimating causal effects, a weighted estimator should be used if the sampling criterion is correlated with the error term. The sampling criterion is the variable used to design the sampling scheme. If it is correlated with the error term, sampling is said to be endogenous and, if ignored, leads to inconsistent estimation. I consider three distinct probability weighted estimators: i) a nonparametric kernel regression estimator; ii) a conditional probability distribution function estimator; and iii) a nonparametric instrumental variable regression estimator. / Thesis / Doctor of Philosophy (PhD)
|
2 |
Interval Censoring and Longitudinal Survey DataPantoja Galicia, Norberto January 2007 (has links)
Being able to explore a relationship between two life events is of great interest to scientists from different disciplines. Some issues of particular concern are, for example, the connection between smoking cessation and pregnancy (Thompson and Pantoja-Galicia 2003), the interrelation between entry into marriage for individuals in a consensual union and first pregnancy (Blossfeld and Mills 2003), and the association between job loss and divorce (Charles and Stephens 2004, Huang 2003 and Yeung and Hofferth 1998).
Establishing causation in observational studies is seldom possible. Nevertheless, if one of two events tends to precede the other closely in time, a causal interpretation of an association between these events can be more plausible. The role of longitudinal surveys is crucial, then, since they allow sequences of events for individuals to be observed. Thompson and Pantoja-Galicia (2003) discuss in this context several notions of temporal association and ordering, and propose an approach to investigate a possible relationship between two lifetime events.
In longitudinal surveys individuals might be asked questions of particular interest about two specific lifetime events. Therefore the joint distribution might be advantageous for answering questions of particular importance. In follow-up studies, however, it is possible that interval censored data may arise due to several reasons. For example, actual dates of events might not have been recorded, or are missing, for a subset of (or all) the sampled population, and can be established only to within specified intervals.
Along with the notions of temporal association and ordering, Thompson and Pantoja-Galicia (2003) also discuss the concept of one type of event "triggering" another. In addition they outline the construction of tests for these temporal relationships.
The aim of this thesis is to implement some of these notions using interval censored data from longitudinal complex surveys. Therefore, we present some proposed tools that may be used for this purpose.
This dissertation is divided in five chapters, the first chapter presents a notion of a temporal relationship along with a formal nonparametric test. The mechanisms of right censoring, interval censoring and left truncation are also overviewed. Issues on complex surveys designs are discussed at the end of this chapter.
For the remaining chapters of the thesis, we note that the corresponding formal nonparametric test requires estimation of a joint density, therefore in the second chapter a nonparametric approach for bivariate density estimation with interval censored survey data is provided. The third chapter is devoted to model shorter term triggering using complex survey bivariate data. The semiparametric models in Chapter 3 consider both noncensoring and interval censoring situations. The fourth chapter presents some applications using data from the National Population Health Survey and the Survey of Labour and Income Dynamics from Statistics Canada. An overall discussion is included in the fifth chapter and topics for future research are also addressed in this last chapter.
|
3 |
Interval Censoring and Longitudinal Survey DataPantoja Galicia, Norberto January 2007 (has links)
Being able to explore a relationship between two life events is of great interest to scientists from different disciplines. Some issues of particular concern are, for example, the connection between smoking cessation and pregnancy (Thompson and Pantoja-Galicia 2003), the interrelation between entry into marriage for individuals in a consensual union and first pregnancy (Blossfeld and Mills 2003), and the association between job loss and divorce (Charles and Stephens 2004, Huang 2003 and Yeung and Hofferth 1998).
Establishing causation in observational studies is seldom possible. Nevertheless, if one of two events tends to precede the other closely in time, a causal interpretation of an association between these events can be more plausible. The role of longitudinal surveys is crucial, then, since they allow sequences of events for individuals to be observed. Thompson and Pantoja-Galicia (2003) discuss in this context several notions of temporal association and ordering, and propose an approach to investigate a possible relationship between two lifetime events.
In longitudinal surveys individuals might be asked questions of particular interest about two specific lifetime events. Therefore the joint distribution might be advantageous for answering questions of particular importance. In follow-up studies, however, it is possible that interval censored data may arise due to several reasons. For example, actual dates of events might not have been recorded, or are missing, for a subset of (or all) the sampled population, and can be established only to within specified intervals.
Along with the notions of temporal association and ordering, Thompson and Pantoja-Galicia (2003) also discuss the concept of one type of event "triggering" another. In addition they outline the construction of tests for these temporal relationships.
The aim of this thesis is to implement some of these notions using interval censored data from longitudinal complex surveys. Therefore, we present some proposed tools that may be used for this purpose.
This dissertation is divided in five chapters, the first chapter presents a notion of a temporal relationship along with a formal nonparametric test. The mechanisms of right censoring, interval censoring and left truncation are also overviewed. Issues on complex surveys designs are discussed at the end of this chapter.
For the remaining chapters of the thesis, we note that the corresponding formal nonparametric test requires estimation of a joint density, therefore in the second chapter a nonparametric approach for bivariate density estimation with interval censored survey data is provided. The third chapter is devoted to model shorter term triggering using complex survey bivariate data. The semiparametric models in Chapter 3 consider both noncensoring and interval censoring situations. The fourth chapter presents some applications using data from the National Population Health Survey and the Survey of Labour and Income Dynamics from Statistics Canada. An overall discussion is included in the fifth chapter and topics for future research are also addressed in this last chapter.
|
4 |
Analysis of Longitudinal Surveys with Missing ResponsesCarrillo Garcia, Ivan Adolfo January 2008 (has links)
Longitudinal surveys have emerged in recent years as an important data collection tool for population studies where the primary interest is to examine population changes over time at the individual level. The National Longitudinal Survey of Children and Youth (NLSCY), a large scale survey with a complex sampling design and conducted by Statistics Canada, follows a large group of children and youth over time and collects measurement on various indicators related to their educational, behavioral and psychological development. One of the major objectives of the study is to explore how such development is related to or affected by familial, environmental and economical factors.
The generalized estimating equation approach, sometimes better known as the GEE method, is the most popular statistical inference tool for longitudinal studies. The vast majority of existing literature on the GEE method, however, uses the method for non-survey settings; and issues related to complex sampling designs are ignored.
This thesis develops methods for the analysis of longitudinal surveys when the response variable contains missing values. Our methods are built within the GEE framework, with a major focus on using the GEE method when missing responses are handled through hot-deck imputation. We first argue why, and further show how, the survey weights can be incorporated into the so-called Pseudo GEE method under a joint randomization framework. The consistency of the resulting Pseudo GEE estimators with complete responses is established under the proposed framework.
The main focus of this research is to extend the proposed pseudo GEE method to cover cases where the missing responses are imputed through the hot-deck method. Both weighted and unweighted hot-deck imputation procedures are considered. The consistency of the pseudo GEE estimators under imputation for missing responses is established for both procedures. Linearization variance estimators are developed for the pseudo GEE estimators under the assumption that the finite population sampling fraction is small or negligible, a scenario often held for large scale population surveys.
Finite sample performances of the proposed estimators are investigated through an extensive simulation study. The results show that the pseudo GEE estimators and the linearization variance estimators perform well under several sampling designs and for both continuous response and binary response.
|
5 |
Analysis of Longitudinal Surveys with Missing ResponsesCarrillo Garcia, Ivan Adolfo January 2008 (has links)
Longitudinal surveys have emerged in recent years as an important data collection tool for population studies where the primary interest is to examine population changes over time at the individual level. The National Longitudinal Survey of Children and Youth (NLSCY), a large scale survey with a complex sampling design and conducted by Statistics Canada, follows a large group of children and youth over time and collects measurement on various indicators related to their educational, behavioral and psychological development. One of the major objectives of the study is to explore how such development is related to or affected by familial, environmental and economical factors.
The generalized estimating equation approach, sometimes better known as the GEE method, is the most popular statistical inference tool for longitudinal studies. The vast majority of existing literature on the GEE method, however, uses the method for non-survey settings; and issues related to complex sampling designs are ignored.
This thesis develops methods for the analysis of longitudinal surveys when the response variable contains missing values. Our methods are built within the GEE framework, with a major focus on using the GEE method when missing responses are handled through hot-deck imputation. We first argue why, and further show how, the survey weights can be incorporated into the so-called Pseudo GEE method under a joint randomization framework. The consistency of the resulting Pseudo GEE estimators with complete responses is established under the proposed framework.
The main focus of this research is to extend the proposed pseudo GEE method to cover cases where the missing responses are imputed through the hot-deck method. Both weighted and unweighted hot-deck imputation procedures are considered. The consistency of the pseudo GEE estimators under imputation for missing responses is established for both procedures. Linearization variance estimators are developed for the pseudo GEE estimators under the assumption that the finite population sampling fraction is small or negligible, a scenario often held for large scale population surveys.
Finite sample performances of the proposed estimators are investigated through an extensive simulation study. The results show that the pseudo GEE estimators and the linearization variance estimators perform well under several sampling designs and for both continuous response and binary response.
|
Page generated in 0.0527 seconds