Spelling suggestions: "subject:"complex systems design"" "subject:"3complex systems design""
1 |
Modeling and Analysis of Complex Systems Design ProcessesKushal A. Moolchandani (5930063) 21 December 2018 (has links)
<div>This work proposes a framework for modeling an organization as a network of autonomous design agents who collectively work on the design of a complex system. The research objective is to identify a design process policy which best suits the current organization evaluated on the basis of the value that it provides to the organization. Consequently, the research question is, "How does an organization comprised of autonomous design teams select a design process policy which provides the highest value?" The proposed framework models design teams as agents who adapt their behavior using information on design variables available from other teams and the incentives in form of rewards from a system-level designer.</div><div><br></div><div><div>While extant literature on complex systems design has proposed several models of design processes, there is still a need for models that are versatile enough to represent different types of purposes and scopes of hierarchical levels. Further, models still do not account for the social, cultural, and political aspects of design. Due to the invariably long development times of a complex system, the environment's dynamics such as changing requirements would require all design teams to update their models and decisions during the process. They have to do this while accounting for the decisions of the other teams. The system-level designer, on the other hand, has to ensure that the design teams' decisions are in the best interest of the organization, which is to maximize value. The work proposed in this research addresses these issues by taking a bottom-up approach to modeling this complex, dynamic and uncertain design environment, where organizational-level outcomes are modeled as a result of decisions of individual teams who respond to local incentives.</div></div><div><br></div><div><div>The system-level designer and the subsystem design teams, are modeled to interact with other agents with whom they share design variables. The subsystem teams first solve their local design problems, and then exchange the results of these problems with other teams. The proposed modeling is versatile to represent human behaviors such as their adding of margins to design variables during the process of information exchange. In each interaction, the receiving teams make decisions to update their local variable values with the one newly available or to continue to use their own value. They make these decisions on the basis of which decision leads to the highest utility measured by a predened value function. Thus, each team acts in its self-interest and maximizes its local value. In case they do not arrive at a common design, the system-level designer attempts to assign rewards which incentivize the teams to update designs such that they are compatible with the other teams. In such cases, the teams would be willing to forgo a portion of their utility obtained from the design outcome if they are compensated for this loss by the system-level designer. Therefore, the task of a system-level designer is to solve a compatibility problem which trades off between different subsystems outcomes and arrives as the final design while maximizing the organization's value.</div></div><div><br></div><div><div>The framework is developed and then described through a series of increasingly complex design cases using a synthetic optimization problem. Following this, an aircraft design problem serves as a demonstration of application of this framework. The results obtained from both the synthetic and the demonstration problem then inform the discussion of various characteristics of a complex systems design process.</div></div>
|
2 |
Function-based Design Tools for Analyzing the Behavior and Sensitivity of Complex Systems During Conceptual DesignHutcheson, Ryan S. 16 January 2010 (has links)
Complex engineering systems involve large numbers of functional elements. Each
functional element can exhibit complex behavior itself. Ensuring the ability of such
systems to meet the customer's needs and requirements requires modeling the behavior
of these systems. Behavioral modeling allows a quantitative assessment of the ability of
a system to meet specific requirements. However, modeling the behavior of complex
systems is difficult due to the complexity of the elements involved and more importantly
the complexity of these elements' interactions.
In prior work, formal functional modeling techniques have been applied as a means of
performing a qualitative decomposition of systems to ensure that needs and requirements
are addressed by the functional elements of the system. Extending this functional
decomposition to a quantitative representation of the behavior of a system represents a
significant opportunity to improve the design process of complex systems.
To this end, a functionality-based behavioral modeling framework is proposed along
with a sensitivity analysis method to support the design process of complex systems.
These design tools have been implemented in a computational framework and have been
used to model the behavior of various engineering systems to demonstrate their maturity,
application and effectiveness. The most significant result is a multi-fidelity model of a
hybrid internal combustion-electric racecar powertrain that enabled a comprehensive
quantitative study of longitudinal vehicle performance during various stages in the design process. This model was developed using the functionality-based framework
and allowed a thorough exploration of the design space at various levels of fidelity. The
functionality-based sensitivity analysis implemented along with the behavioral modeling
approach provides measures similar to a variance-based approach with a computation
burden of a local approach. The use of a functional decomposition in both the
behavioral modeling and sensitivity analysis significantly contributes to the flexibility of
the models and their application in current and future design efforts. This contribution
was demonstrated in the application of the model to the 2009 Texas A&M Formula
Hybrid powertrain design.
|
3 |
Consideração da confiabilidade humana na concepção de sistemas complexos: desenvolvimento e aplicação da TECHR. / Consideration of human reliability in complex systems design: development and application of TECHR.Maturana, Marcos Coelho 20 February 2017 (has links)
A APS (Análise Probabilística de Segurança) de instalações industriais é assunto que evoluiu com a complexidade dos sistemas. A princípio, foram desenvolvidas ferramentas e técnicas com o propósito de analisar plantas já instaladas, possibilitando a identificação de fenômenos e mecanismos de falha desconhecidos até então. Com a evolução dos estudos dos acidentes, foram desenvolvidas técnicas aplicáveis às fases pré-operacionais com o propósito de diminuir os riscos na operação. Observa-se, portanto, um bom número de técnicas ideais para analisar projetos prontos ou em fase de conclusão. O mesmo não é observado para a fase de concepção. Apesar disto, cada vez mais especialistas na área de risco propõem que as considerações de segurança são mais eficazes quando ponderadas ao longo de toda a vida dos sistemas críticos. O estudo das APS realizadas no mundo em várias indústrias ajuda a entender o consenso sobre a contribuição potencial destas análises no desenvolvimento de novos sistemas. Para explorar este potencial, é essencial a elaboração de processos e modelos prospectivos que sejam simples, quantitativos, realistas, capazes de alimentar análises no estágio de projeto e que tragam resultados que possam ser interpretados pelos profissionais envolvidos no processo decisório. Estas considerações são extensíveis à ACH (Análise de Confiabilidade Humana), i.e., poucas são as ferramentas que ponderam aspectos operacionais, em especial o desempenho humano, na fase de projeto. A reconhecida contribuição do fator humano em acidentes envolvendo sistemas complexos - por vezes atribuída à falta de ferramentas adequadas para sua consideração na fase de projeto - evidencia ainda mais esta lacuna. Neste contexto, esta tese apresenta o desenvolvimento de uma metodologia e de uma técnica para a consideração precoce da confiabilidade humana na concepção de sistemas complexos, sendo que: 1) o desenvolvimento desta metodologia primou pela facilidade de entendimento de suas etapas e resultados, i.e., procurou-se a inteligibilidade para as pessoas envolvidas no projeto, sendo especialistas em ACH ou não, e; 2) a TECHR (Technique for Early Consideration of Human Reliability) foi concebida com o propósito de desenvolver um modelo prospectivo para o desempenho humano que possa ser explorado na fase de concepção de sistemas, e se baseia no aproveitamento da opinião de especialistas em relação a sistemas que operam ou operaram nos últimos anos para obter estimativas das probabilidades dos diversos tipos de erro humano que podem ocorrer durante a execução de uma ação específica. A metodologia proposta e a TECHR resultam em um procedimento simples e capaz de produzir modelos extremamente úteis na fase de projeto, representando uma contribuição original para o estado da arte da concepção de sistemas baseada em dados incertos. / PSA (Probabilistic Safety Assessment) is an industrial plant issue that has evolved with the complexity of systems. Initially, tools and techniques have been developed with the main purpose of analyzing operational plants, enabling the identification of phenomena and fault mechanisms hitherto not highlighted. With the evolution of accidents studies, some techniques applicable to pre-operational phases were developed in order to reduce the risks in operation. Therefore, a number of techniques adequate to analyze ready or near completion designs can be found. The same is not observed for the early design phase. Despite this, more and more experts in the risk assessment field suggest that safety considerations are most effective when assessed over the whole life of critical systems. Probabilistic safety analyses performed worldwide in various industries help us understand the consensus on the potential contribution of these analyses for developing new systems. To exploit this potential, it is essential to develop processes and prospective models that are simple, quantitative, realistic, able to feed analyses at the design stage and to bring results that can be interpreted by the professionals involved in the decision making process. These considerations are extended to HRA (Human Reliability Analysis), i.e., there are few tools that consider operational aspects, especially human performance, during the design phase. The recognized contribution of the human factor in accidents involving complex systems - sometimes attributed to the lack of suitable tools for its consideration in the design phase - further highlights this gap. In this context, this thesis presents a methodology and a technique developed for the early consideration of human reliability in complex systems design, and: 1) the development of this methodology has prioritized the easy understanding of its steps and results, i.e., its intelligibility for people involved in the system design has been sought, with expertise in HRA or not, and; 2) the technique for early consideration of human reliability (TECHR) was designed for developing a prospective human performance model that can be exploited in the system design phase, and is based on the use of expert opinion in relation to systems that operate or have operated in recent years to obtain estimates of the probabilities of the various types of human error that may occur during the performance of a specific action. The proposed methodology and technique result in a simple procedure capable of producing useful models for the design phase, representing an original contribution to the state of the art of systems conception under uncertainty.
|
4 |
Consideração da confiabilidade humana na concepção de sistemas complexos: desenvolvimento e aplicação da TECHR. / Consideration of human reliability in complex systems design: development and application of TECHR.Marcos Coelho Maturana 20 February 2017 (has links)
A APS (Análise Probabilística de Segurança) de instalações industriais é assunto que evoluiu com a complexidade dos sistemas. A princípio, foram desenvolvidas ferramentas e técnicas com o propósito de analisar plantas já instaladas, possibilitando a identificação de fenômenos e mecanismos de falha desconhecidos até então. Com a evolução dos estudos dos acidentes, foram desenvolvidas técnicas aplicáveis às fases pré-operacionais com o propósito de diminuir os riscos na operação. Observa-se, portanto, um bom número de técnicas ideais para analisar projetos prontos ou em fase de conclusão. O mesmo não é observado para a fase de concepção. Apesar disto, cada vez mais especialistas na área de risco propõem que as considerações de segurança são mais eficazes quando ponderadas ao longo de toda a vida dos sistemas críticos. O estudo das APS realizadas no mundo em várias indústrias ajuda a entender o consenso sobre a contribuição potencial destas análises no desenvolvimento de novos sistemas. Para explorar este potencial, é essencial a elaboração de processos e modelos prospectivos que sejam simples, quantitativos, realistas, capazes de alimentar análises no estágio de projeto e que tragam resultados que possam ser interpretados pelos profissionais envolvidos no processo decisório. Estas considerações são extensíveis à ACH (Análise de Confiabilidade Humana), i.e., poucas são as ferramentas que ponderam aspectos operacionais, em especial o desempenho humano, na fase de projeto. A reconhecida contribuição do fator humano em acidentes envolvendo sistemas complexos - por vezes atribuída à falta de ferramentas adequadas para sua consideração na fase de projeto - evidencia ainda mais esta lacuna. Neste contexto, esta tese apresenta o desenvolvimento de uma metodologia e de uma técnica para a consideração precoce da confiabilidade humana na concepção de sistemas complexos, sendo que: 1) o desenvolvimento desta metodologia primou pela facilidade de entendimento de suas etapas e resultados, i.e., procurou-se a inteligibilidade para as pessoas envolvidas no projeto, sendo especialistas em ACH ou não, e; 2) a TECHR (Technique for Early Consideration of Human Reliability) foi concebida com o propósito de desenvolver um modelo prospectivo para o desempenho humano que possa ser explorado na fase de concepção de sistemas, e se baseia no aproveitamento da opinião de especialistas em relação a sistemas que operam ou operaram nos últimos anos para obter estimativas das probabilidades dos diversos tipos de erro humano que podem ocorrer durante a execução de uma ação específica. A metodologia proposta e a TECHR resultam em um procedimento simples e capaz de produzir modelos extremamente úteis na fase de projeto, representando uma contribuição original para o estado da arte da concepção de sistemas baseada em dados incertos. / PSA (Probabilistic Safety Assessment) is an industrial plant issue that has evolved with the complexity of systems. Initially, tools and techniques have been developed with the main purpose of analyzing operational plants, enabling the identification of phenomena and fault mechanisms hitherto not highlighted. With the evolution of accidents studies, some techniques applicable to pre-operational phases were developed in order to reduce the risks in operation. Therefore, a number of techniques adequate to analyze ready or near completion designs can be found. The same is not observed for the early design phase. Despite this, more and more experts in the risk assessment field suggest that safety considerations are most effective when assessed over the whole life of critical systems. Probabilistic safety analyses performed worldwide in various industries help us understand the consensus on the potential contribution of these analyses for developing new systems. To exploit this potential, it is essential to develop processes and prospective models that are simple, quantitative, realistic, able to feed analyses at the design stage and to bring results that can be interpreted by the professionals involved in the decision making process. These considerations are extended to HRA (Human Reliability Analysis), i.e., there are few tools that consider operational aspects, especially human performance, during the design phase. The recognized contribution of the human factor in accidents involving complex systems - sometimes attributed to the lack of suitable tools for its consideration in the design phase - further highlights this gap. In this context, this thesis presents a methodology and a technique developed for the early consideration of human reliability in complex systems design, and: 1) the development of this methodology has prioritized the easy understanding of its steps and results, i.e., its intelligibility for people involved in the system design has been sought, with expertise in HRA or not, and; 2) the technique for early consideration of human reliability (TECHR) was designed for developing a prospective human performance model that can be exploited in the system design phase, and is based on the use of expert opinion in relation to systems that operate or have operated in recent years to obtain estimates of the probabilities of the various types of human error that may occur during the performance of a specific action. The proposed methodology and technique result in a simple procedure capable of producing useful models for the design phase, representing an original contribution to the state of the art of systems conception under uncertainty.
|
Page generated in 0.066 seconds