• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

STRUCTURAL, TRANSPORT, AND TOPOLOGICAL PROPERTIES INDUCED AT COMPLEX-OXIDE HETERO-INTERFACES

Thompson, Justin K. 01 January 2018 (has links)
Complex-oxides have seen an enormous amount of attention in the realm of Condensed Matter Physics and Materials Science/Engineering over the last several decades. Their ability to host a wide variety of novel physical properties has even caused them to be exploited commercially as dielectric, metallic and magnetic materials. Indeed, since the discovery of high temperature superconductivity in the “Cuprates” in the late 1980’s there has been an explosion of activity involving complex-oxides. Further, as the experimental techniques and equipment for fabricating thin films and heterostructures of these materials has improved over the last several decades, the search for new and more exotic properties has intensified. These properties stem from the interfaces formed by depositing these materials onto one another. Whether it be interfacial strain induced by the mismatch between the crystal structures, modified exchange interactions, or some combination of these and other interactions, thin films and heterostuctures provide an invaluable tool the modern condensed matter community. Simply put, a “complex-oxide” is any compound that contains Oxygen and at least two other elements; or one atom in two different oxidation states. Transition Metal Oxides (TMO’s) are a subset of complex-oxides which are of particular interest because of their strong competition between their charge, spin and orbit degrees of freedom. As we progress down the periodic table from 3d to 4d to 5d transition metals, the crystal field, electron correlation and spin-orbit energies become more and more comparable. Therefore, TMO thin films and heterostructures are indispensable to the search for novel physical properties. KTaO3 (KTO) is a polar 5d TMO which has been investigated for its high-k dielectric properties. It is a band insulator with a cubic perovskite crystal structure which is isomorphic to SrTiO3 (STO). This is important because non-polar STO is famous for forming a highly mobile, 2-Dimensional Electron Gas (2DEG) at the hetero-interface with polar LaAlO3 (LAO) as a result of the so-called “polar catastrophe”. Here, I use this concept of polarity to ask an important question: “What happens at hetero-interfaces where two different polar complex oxides meet?” From this question we propose that a hetero-interface between two polar complex-oxides with opposite polarity (I-V/III-III) should be impossible because of the strong Coulomb repulsion between the adjacent layers. However, we find that despite this proposed conflict we are able to synthesize KTO thin films on (110) oriented GdScO3 (GSO) substrates and the conflict is avoided through atomic reconfiguration at the hetero-interface. SrRuO3 (SRO) is a 4d TMO, and an itinerant ferromagnet that is used extensively as an electrode material in capacitor and transistor geometries and proof-of-concept devices. However, in the thin film limit the ferromagnetic transition temperature, TC, and conductivity drop significantly and even become insulating and lose their ferromagnetic properties. Therefore, we ask “Are the transport properties of SRO thin films inherently inferior to single crystals, or is there a way to maintain and/or enhance the metallic properties in the thin film limit?” We have fabricated SRO thin films of various thickness on GSO substrates (tensile strain) and find that all of our samples have enhanced metallic properties and even match those of single crystals. Finally, we ask “Can these enhanced metallic properties in SRO thin films allow us to observe evidence of a topological phase without the complexity of off-stoichiometry and/or additional hetero-structural layers?” Recent reports of oxygen deficient EuO films as well as hetero-structures and superlattices of SRO mixed with SrIrO3 or La0.7Sr0.3MnO3 have suggested that a magnetic skyrmion phase may exist in these systems. By measuring the Hall resistivity, we are able to observer a topological Hall effect which is likely a result of a magnetic skyrmion. We find that of the THE exists in a narrow temperature range and the proposed magnetic skyrmions range in size from 20-120 nm. Therefore, the SRO/GSO system can provide a more viable means for investigating magnetic skyrmions and their fundamental interactions.
2

Titanium Niobium Complex Oxide (TiNb2O7) Thin Films for Micro Battery Applications

Daramalla, Venkateswarlu January 2015 (has links) (PDF)
The research work presented in this thesis reports for the first time the fabrication of Titanium Niobium complex oxide (TiNb2O7 (TNO)) thin films by employing pulsed laser deposition and their use as the anode material in Li-ion micro batteries. Chapter 1 provides a brief introduction to complex metal oxides as multifunctional materials. In the first section of this chapter, a brief introduction is given about the history of TNO complex oxide material. The complex structure and properties of TNO oxide are also discussed briefly. In the second section, the importance and need of thin film batteries in emerging applications is discussed. Finally, the specific objectives of the current research are outlined in the last section. Chapter 2 gives the details about various experimental methods and characterization tools used in this research. The first part gives a brief overview about the principles and the use of different experimental methods involved in the growth of TNO thin films using pulsed laser deposition. Details, including the laboratory setup designed for PLD growth, also described briefly. In the second part, the different state-of-the-art characterization tools used in this research are described in terms of their principles and their applications such as measuring structural, morphological, chemical and electrochemical properties. Chapter 3 describes the synthesis and characterization of TNO bulk targets prepared via solid state reaction. In the first part, the detailed descriptions of experimental conditions are given. In the second part, the study of as-prepared TNO targets by various characterization tools such as XRD, Raman, SEM and XPS for understanding its structure, morphology and chemical properties are discussed briefly. The emphasis is made on the preparation of a quality target by careful observations. Chapter 4 mainly describes the comprehensive studies carried out on the fabrication and characterization of TNO thin films using PLD. In the first part, the preliminary experimental conditions for the growth of TNO thin films on Pt (200)/TiO2/SiO2/ Si (100) substrates are explained briefly. The importance of primary understanding about target-laser interaction through the structural, morphology changes observed by various characterization tools is discussed. In the latter part of the chapter, the effects of systematic variation of deposition parameters on the properties of the grown TNO thin films are described extensively. Various advanced characterization tools are used to study the changes in as-grown TNO thin films in terms of their structural, morphological and chemical changes by various advanced characterization tools. Chapter 5 is an account of the state-of-the-art characterization tools that are used on the as-grown TNO thin films for determining structural, compositional and elemental information with nanometer spatial resolution. In the first part, the effects of various processing conditions used during FIB are discussed briefly, along with observed results. An attempt has been made to solve the experimental difficulties during FIB for cross sectional sample preparation for HRTEM analysis. Later, the imaging, diffraction and spectroscopic studies carried out on TNO thin films using HRTEM, STEM HAADF, and EDXS elemental mapping are discussed in detail. Finally, obtained results are correlated to the experimental conditions during PLD growth. Chapter 6 focuses on the usage of as-grown TNO thin films as a new anode material in rechargeable Li-ion micro batteries. The various experimental details, battery cell fabrication, etc are described in the first part of the chapter. Then the comprehensive studies are carried out for demonstrating TNO thin films as anode material in micro batteries. Besides this, the basic cyclic voltammogram and charge-discharge tests carried out on a TNO electrode are discussed in detail. The structural, morphological studies are done before and after the electrochemical cell reaction to understand the crystal stability of TNO as an anode electrode. The effects of important experimental parameters on their electrochemical properties are also described briefly. Finally, the observed results are compared with existing literature. Chapter 7 summarizes the present research reported in this thesis and discusses the future research that could give insight into the understanding and optimization of TNO thin films for better usage in battery applications.
3

Исследование каталитических свойств сложных оксидов PrBaCo2-xMxO6-d в электрохимическом окислении глюкозы : магистерская диссертация / Investigation of the catalytic properties of complex oxides PrBaCo2-xMxO6-d in the electrochemical oxidation of glucose

Разумова, М. В., Razumova, M. V. January 2018 (has links)
The analysis of literature data has shown that the methods used in laboratory diagnostics for determining the concentration of glucose and hydrogen peroxide have a number of disadvantages, for the elimination of which it is proposed to use electrochemical methods of determination. The electrochemical properties of complex oxides with a perovskite-like structure were studied using voltammetry and chronoamperometry. It has been established that all the complex oxides studied exhibit electrocatalytic activity with respect to glucose and hydrogen peroxide. It is shown that the scanning speed and the time of ultrasonic treatment of oxides have no significant effect on the process. Compounds that can be used as catalysts for creating sensors for determining glucose and hydrogen peroxide are proposed. / Анализ литературных данных показал, что применяемые в лабораторной диагностике методы для определения концентрации глюкозы и пероксида водорода имеют ряд недостатков, для устранения которых предлагается использовать электрохимические методы определения. Изучены электрохимические свойства сложных оксидов с перовскитоподобной структурой с применением вольтамперометрии и хроноамперометрии. Установлено, что все исследованные сложные оксиды проявляют электрокаталитическую активность по отношению к глюкозе и пероксиду водорода. Показано, что скорость сканирования и время ультразвуковой обработки оксидов не оказывает существенного влияния на процесс. Предложены соединения, которые могут быть использованы в качестве катализаторов для создания сенсоров для определения глюкозы и пероксида водорода.

Page generated in 0.3546 seconds