• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polylogarithmes et mesure de Mahler

Gu, Jarry 09 1900 (has links)
Le but principal de ce mémoire est de calculer la mesure de Mahler logarithmique d’une famille de polynômes à trois variables x^n + 1 + (x^(n−1) + 1)y + (x − 1)z. Pour réaliser cet objectif, on intègre des régulateurs définis sur des complexes motiviques polylogarithmiques. Pour comprendre ces régulateurs, on explore les propriétés des polylogarithmes et démontre quelques identités polylogarithmiques. Ensuite, on utilise les régulateurs afin de simplifier l’intégrante. Notre résultat est une formule qui relie la mesure de Mahler de la famille de polynômes susmentionnée au dilogarithme de Bloch–Wigner et à la fonction zêta de Riemann. / The main purpose of this thesis is to compute the logarithmic Mahler measure of the three variable polynomial family xn + 1 + (xn−1 + 1)y + (x − 1)z. In order to accomplish this, we integrate regulators defined on polylogarithmic motivic complexes. To understand these regulators, we explore the properties of polylogarithms and show some polylogarithmic identities. The regulators are then applied to simplify the integrand. Our result is a formula relating the Mahler measure of the family of polynomials to the Bloch–Wigner Dilogarithm and the Riemann zeta function.

Page generated in 0.096 seconds