• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Thermal Management Methodology for a Front-End DPS Power Supply

Sewall, Evan Andrew 11 November 2002 (has links)
Thermal management is a rapidly growing field in power electronics today. As power supply systems are designed with higher power density levels, keeping component temperatures within suitable ranges of their maximum operating limits becomes an increasingly challenging task. This project focuses on thermal management at the system level, using a 1.2 kW front-end power converter as a subject for case study. The establishment of a methodology for using the computer code I-deas to computationally simulate the thermal performance of component temperatures within the system was the primary goal. A series of four benchmarking studies was used to verify the computational predictions. The first test compares predictions of a real system with thermocouple measurements, and the second compares computational predictions with infrared camera and thermocouple measurements on a component mounted to a heat sink. The third experiment involves using flow visualization to verify the presence of vortices in the flow field, and the fourth is a comparison of computational temperature predictions of a DC heater in a controlled flow environment. A radiation study using the Monte Carlo ray-trace method for radiation heat transfer resulted in the reduction of some component temperature predictions of significant components. This radiation study focused on an aspect of heat transfer that is often ignored in power electronics. A component rearrangement study was performed to establish a set of guidelines for component placement in future electronic systems. This was done through the use of a test matrix in which the converter layout was varied a number of different ways in order to help determine thermal effects. Based on the options explored and the electrical constraints on the circuit, an optimum circuit layout was suggested for maximum thermal performance. This project provides a foundation for the thermal management of power electronics at the system level. The use of I-deas as a computational modeling tool was explored, and comparison of the code with experimental measurements helped to explore the accuracy of I-deas as a system level thermal modeling tool. / Master of Science
2

Development of Strategies in Finding the Optimal Cooling of Systems of Integrated Circuits

Minter, Dion Len 11 June 2004 (has links)
The task of thermal management in electrical systems has never been simple and has only become more difficult in recent years as the power electronics industry pushes towards devices with higher power densities. At the Center for Power Electronic Systems (CPES), a new approach to power electronic design is being implemented with the Integrated Power Electronic Module (IPEM). It is believed that an IPEM-based design approach will significantly enhance the competitiveness of the U.S. electronics industry, revolutionize the power electronics industry, and overcome many of the technology limits in today's industry by driving down the cost of manufacturing and design turnaround time. But with increased component integration comes the increased risk of component failure due to overheating. This thesis addresses the issues associated with the thermal management of integrated power electronic devices. Two studies are presented in this thesis. The focus of these studies is on the thermal design of a DC-DC front-end power converter developed at CPES with an IPEM-based approach. The first study investigates how the system would respond when the fan location and heat sink fin arrangement are varied in order to optimize the effects of conduction and forced-convection heat transfer to cool the system. The set-up of an experimental test is presented, and the results are compared to the thermal model. The second study presents an improved methodology for the thermal modeling of large-scale electrical systems and their many subsystems. A zoom-in/zoom-out approach is used to overcome the computational limitations associated with modeling large systems. The analysis performed in this paper was completed using I-DEAS©,, a three-dimensional finite element analysis (FEA) program which allows the thermal designer to simulate the affects of conduction and convection heat transfer in a forced-air cooling environment. / Master of Science

Page generated in 0.2711 seconds