• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geração, seleção e combinação de componentes para ensembles de redes neurais aplicadas a problemas de classificação / Generation, selection and combination of components in neural network ensembles applied to classification problems

Coelho, Guilherme Palermo, 1980- 29 September 2006 (has links)
Orientador: Fernando Jose Von Zuben / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e Computação / Made available in DSpace on 2018-08-11T19:03:12Z (GMT). No. of bitstreams: 1 Coelho_GuilhermePalermo_M.pdf: 2968179 bytes, checksum: bbea7c9c565907f86eee09155421bfa3 (MD5) Previous issue date: 2006 / Resumo: O uso da abordagem ensembles tem sido bastante explorado na última década, por se tratar de uma técnica simples e capaz de aumentar a capacidade de generalização de soluções baseadas em aprendizado de máquina. No entanto, para que um ensemble seja capaz de promover melhorias de desempenho, os seus componentes devem apresentar bons desempenhos individuais e, ao mesmo tempo, devem ter comportamentos diversos entre si. Neste trabalho, é proposta uma metodologia de criação de ensembles para problemas de classificação, onde os componentes são redes neurais artificiais do tipo perceptron multicamadas. Para que fossem gerados bons candidatos a comporem o ensemble, atendendo a critérios de desempenho e de diversidade, foi aplicada uma meta-heurística populacional imuno-inspirada, denominada opt-aiNet, a qual é caracterizada por definir automaticamente o número de indivíduos na população a cada iteração, promover diversidade e preservar ótimos locais ao longo da busca. Na etapa de seleção dos componentes que efetivamente irão compor o ensemble, foram utilizadas seis técnicas distintas e, para combinação dos componentes selecionados, foram adotadas cinco estratégias. A abordagem proposta foi aplicada a quatro problemas de classificação de padrões e os resultados obtidos indicam a validade da metodologia de criação de ensembles. Além disso, foi verificada uma dependência entre o melhor par de técnicas de seleção e combinação e a população de indivíduos candidatos a comporem o ensemble, assim como foi feita uma análise de confiabilidade dos resultados de classificação / Abstract: In the last decade, the ensemble approach has been widely explored, once it is a simple technique capable of increasing the generalization capability of machine learning based solutions. However, an ensemble can only promote performance enhancement if its components present good individual performance and, at the same time, diverse behavior among each other. This work proposes a methodology to synthesize ensembles for classification problems, where the components of the ensembles are multi-layer perceptrons. To generate good candidates to compose the ensemble, meeting the performance and diversity requirements, it was applied a populational and immune-inspired metaheuristic, named opt-aiNet, which is characterized as being capable of automatically determining the number of individuals in the population at each iteration, promoting diversity and preserving local optima through the search. In the component selection phase, six distinct techniques were applied and, to combine these selected components, five strategies were adopted. The proposed approach was applied to four pattern classification problems and the obtained results indicated the validity of the methodology to synthesize ensembles. It was also verified a dependence of the best pair of selection and combination techniques on the population of candidates to compose the ensemble, and it was made an analysis of the confidence of the classification results / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica

Page generated in 0.1317 seconds