• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimisation of parametric equations for shock transmission through surface ships from underwater explosions

Elder, David James, d.elder@crc-acs.com.au January 2006 (has links)
Currently shock effects on surface ships can be determined by full scale shock trials, Finite Element Analysis or semi empirical methods that reduce the analytical problem to a limited number of degrees of freedom and include hull configurations, construction methods and materials in an empirical way to determine any debilitating effects that an explosion may have on the ship. This research has been undertaken to better understand the effect of hull shape on surface ships' shock response to external underwater explosions (UNDEX). The study is within the semi empirical method category of computations. A set of simple closed-form equations has been developed that accurately predicts the magnitude of dynamic excitation of different 2- D rigid-hull shapes subject to far-field UNDEX events. This research was primarily focused on the affects of 2-D rigid hull shapes and their contribution to global ship motions. A section of the thesis,
2

Durabilité des interfaces collées béton/renforts composites : développement d'une méthodologie d'étude basée sur un dispositif de fluage innovant conçu pour être couplé à un vieillissement hygrothermique / Durability of the stuck interfaces composite concretes-reinforcements

Houhou, Noureddine 28 September 2012 (has links)
Le programme de recherche développé dans le cadre de cette thèse a pour principal objectif de concevoir, réaliser et valider une méthodologie d'étude des effets du vieillissement des interfaces collées, basée sur l'utilisation d'un dispositif de fluage innovant pouvant être couplé à un vieillissement hygrothermique. Celui-ci reprend la configuration classique de joint à double recouvrement mais permet de solliciter sous charge constante l'assemblage collé béton/composite. Il présente de plus certaines spécificités (zones de joint non sollicitées, compatibilité avec une machine d'essai à simple recouvrement existante,...) qui permettent de recueillir un grand nombre de résultat expérimentaux complémentaires. En premier lieux, nos travaux présentent une synthèse bibliographique retraçant le contexte du renforcement par composites collés et précisant les principaux mécanismes physico-chimiques susceptibles d'affecter la durabilité des adhésifs. Le manuscrit décrit ensuite les travaux expérimentaux menés pour étudier le comportement mécanique et physico-chimique des deux adhésifs sélectionnés pour la réalisation des joints collés béton/composites. Finalement, une approche prédictive basée sur i) des tests de fluage thermo-stimulés, ii) sur l'application du Principe de Superposition Temps-Température et iii) sur l'utilisation du modèle rhéologique de Burger, a permis de proposer un modèle de fluage non linéaire pour chacun des deux systèmes de colle. La seconde partie des travaux expérimentaux concerne la conception et la validation d'un dispositif innovant destiné à la caractérisation du comportement en fluage des interfaces collées béton/composite. Un élément important du cahier des charges de ce dispositif était d'en limiter l'encombrement, de sorte qu'il soit possible de tester plusieurs corps d'épreuve dans une chambre climatique au volume réduit, en vue d'étudier les effets synergiques du fluage et du vieillissement environnemental sur la durabilité des joints collés. Dans ce contexte, un prototype capable de solliciter en fluage trois corps d'épreuves à double recouvrement réalisés avec le procédé de renforcement Sika®Carbodur®S et connectés sur un unique circuit hydraulique, a été conçu et réalisé. Les résultats issus du prototype ont permis de le valider, en vérifiant notamment le maintient dans le temps de la charge appliquée, et le comportement symétrique des corps d'épreuve à double recouvrement. Le comportement mécanique des interfaces collées s'est révélé répétable, symétrique et conforme aux diverses modélisations réalisées, soit en calculant la réponse instantanée de l'interface au moyen d'un logiciel aux Eléments Finis (E.F.) ou à partir du modèle analytique de Volkersen, soit en calculant la réponse différée de l'interface en intégrant le modèle de fluage non linéaire de l'adhésif identifié précédemment dans le calcul aux E.F.. La dernière partie des travaux présentés dans le manuscrit concerne la réalisation d'un banc complet de fluage impliquant 14 corps d'épreuves à double recouvrement. Ces corps d'épreuve sont réalisés pour moitié avec le système de renforcement Sika®Carbodur®S et pour l'autre moitié avec le système Compodex. Le banc de fluage est installé dans la salle de vieillissement hygrothermique du Département Laboratoire d'Autun (40°C ; 95% H.R.). Tous les corps d'épreuves sont sollicités en fluage par un système de chargement alimenté par un circuit hydraulique similaire à celui utilisé pour le prototype, mais complété par une centrale hydraulique régulant la pression à partir de la mesure d'un capteur de pression. Pour compléter ces caractérisations sur interfaces collées, des essais de vieillissement sont également menés sur des éprouvettes d'adhésifs massiques stockées dans la salle climatique, certaines d'entre elles étant simultanément soumises à des sollicitations de fluage / The main objective of the present research is to design, realize and validate a methodology for studying ageing of bonded interfaces, based on the development of an innovative experimental creep device that can be coupled to hydrothermal aging. This device is based on the double-lap joint shear test configuration and enables to apply a constant load to the bonded assembly. In addition, this device combines other complementary features (unsolicited bonded joint zones, compatibility with an existing single lap shear test machine ...) that allows collecting useful complementary data. First, our work presents a literature review outlining the context of strengthening by bonded composite and specifying the main physicochemical mechanisms that may affect the durability of adhesive joints. Then, the manuscript describes the experimental characterizations carried out to assess both mechanical and physicochemical behaviors of the two adhesives selected for this study and which will be used to bond the composite on RC specimens in a later stage. Finally, a predictive approach based on i) thermo-stimulated creep tests, ii) on the application of the Time-Temperature-Superposition Principle and iii) on the use of the Burger's rheological model, allowed us to propose a non-linear creep model for each of the two adhesive systems. The second part of the experimental work is devoted to the design and validation of an innovative device for characterizing the creep behavior of concrete / composite adhesively bonded interfaces. An important requirement in the specifications was to reduce the size of the experimental device, so that several test specimens could be installed in a climatic room of limited volume, in order to study the synergistic effects of creep and hydrothermal ageing on the joint durability. In this line, a prototype involving three double-shear test-specimens loaded by flat jacks actuated by a centralized hydraulic system, was designed and realized (test-specimens were prepared using the Sika®Carbodur® S strengthening system). Collected data made it possible to validate the creep setup, by checking the constancy of the applied load over time, and the symmetrical behavior of the double lap shear test bodies. The mechanical behavior of the bonded interfaces was found to be repeatable, symmetrical and in a fair agreement with numerical and analytical modeling, done either by calculating the instantaneous response of the interface using a finite element (FE) approach and the analytical Völkersen's model, or by simulating the delayed creep response of the interface using a FE model in which the non-linear creep behavior of the adhesive layer had been implemented. The last chapter of the manuscript presents the realization of a full-scale creep setup involving fourteen double lap test specimens. Half of the test specimens were strengthened with Sika®Carbodur ® S and the other half with Compodex® C12 reinforcing composite system. This creep setup was installed in the climatic room of the Département Laboratoire d'Autun (40°C, 95% R.H.). Test specimens are creep loaded thanks to flat jacks powered by a hydraulic system similar to that used in the prototype, but supplemented by an electronic station that ensures pressure regulation in the circuit, based on the measurements of a pressure sensor. Beside these characterizations of bonded interfaces, complementary tests are also conducted on samples of the buk adhesive material stored in the climatic room, some of these samples being simultaneously subjected to creep loading
3

Some Experimental and Numerical Studies on Evaluation of Adhesive Bond Integrity of Composites Lap Shear Joints

Vijaya Kumar, R L January 2014 (has links) (PDF)
Adhesive bonding which has been in use for long as a traditional joining method has gained ground in the last couple of decades due to the introduction of advanced composite materials into the aerospace industry. Bonded structures have advantages such as high corrosion and fatigue resistance, ability to join dissimilar materials, reduced stress concentration, uniform stress distribution, good damping characteristics etc. They also have certain limitations like environmental degradation, existence of defects like pores, voids and disbonds, difficulty in maintenance and repair etc. A serious drawback in the use of adhesively bonded structures has been that there are no established comprehensive non-destructive testing (NDT) techniques for their evaluation. Further, a reliable evaluation of the effect of the existing defects on strength and durability of adhesive joints is yet to be achieved. This has been a challenge for the research and development community over several decades and hence, been the motivation behind this piece of research work. Under the scope of the work carried out in the thesis, some of the primary factors such as the existence of defects, degradation of the adhesive, stress and strain distribution in the bonded region etc., have been considered to study the bond integrity in composite to composite lap shear joints. The problem becomes complex if all the parameters affecting the adhesive joint are varied simultaneously. Taking this into consideration, one of the key parameters affecting the bond quality, viz., the adhesive layer degradation was chosen to study its effect on the bonded joint. The epoxy layer was added with different, definite amount of Poly vinyl alcohol (PVA) to arrive at sets of bonded joint specimens with varied adhesive layer properties. A thorough review of different non destructive testing methods applied to this particular problem showed that ultrasonic wave based techniques could be the right choice. To start with, preliminary experimental investigations were carried on unidirectional glass fiber reinforced plastic (GFRP-epoxy) lap joints. The adhesive joints were subjected to non destructive evaluation (NDE) using ultrasonic through transmission and pulse echo techniques as also low energy digital X-ray techniques. The results obtained showed a variation in reflected and transmitted ultrasonic pulse amplitude with bond quality. Digital X-Ray radiography technique showed a variation in the intensity of transmitted x-rays due to variation in the density of adhesive. Standard mechanical tests revealed that the addition of PVA decreased the bond strength. A plot of coefficient of reflection from the first interface and the bond strength showed a linear correlation between them. After obtaining a cursory feel and understanding of the parameters involved with the preliminary experiments on GFRP adhesive joints which yielded interesting and encouraging results, further work was carried on specimens made out of autoclave cured carbon fiber reinforced plastic (CFRP)-epoxy bonded joints. Normal incidence ultrasound showed a similar trend. Analyses of the Acoustic Emission (AE) signals generated indicate early AE activity for degraded joints compared to healthy joints. Literary evidences suggest that the ultrasonic shear waves are more sensitive to interfacial degradation. An attempt was made to use oblique incidence ultrasonic interrogation using shear waves. The amplitude of reflected shear waves from the interface increased with an increase in degradation. Further, a signal analysis approach in the frequency domain revealed a shift in the frequency minimum towards lower range in degraded samples. This phenomenon was verified using analytical models. An inversion algorithm was used to determine the interfacial transverse stiffness which decreased significantly due to increase in degradation. Conventional ultrasonic evaluation methods are rendered ineffective when a direct access to the test region is not possible; a different approach with guided wave techniques can be explored in this scenario. Investigations on CFRP-epoxy adhesive joints using Lamb waves showed a decrease in the amplitude of ‘So’ mode in degraded samples. Theoretical dispersion curves exhibited a similar trend. Frequency domain studies on the received modes using Gabor wavelet transform showed a negative shift in frequency with increased degradation. It was also observed that the maximum transmission loss for the most degraded sample with 40 percent PVA occurred in the range of 650 – 800 kHz. Non linear ultrasonic (NLU) evaluation revealed that the nonlinearity parameter (β) increased with increased degradation. Kissing bonds are most commonly occurring type of defects in adhesive joints and are very difficult to characterize. A recent non-contact imaging technique called digital image correlation (DIC) was tried to evaluate composite adhesive joints with varied percentage of inserted kissing bond defects. The results obtained indicate that DIC can detect the kissing bonds even at 50 percent of the failure load. In addition, to different experimental approaches to evaluate the bonded joint discussed above, the effect of degradation on the stresses in the bond line region was studied using analytical and numerical approach. A linear adhesive beam model based on Euler beam theory and a nonlinear adhesive beam model based on Timoshenko beam theory were used to determine the adhesive peel and shear stress in the joint. Digital image correlation technique was used to experimentally obtain the bond line strains and corresponding stresses were computed assuming a plane strain condition. It was found that the experimental stresses followed a similar trend to that predicted by the two analytical models. A maximum peel stress failure criterion was used to predict failure loads. A failure mechanism was proposed based on the observations made during the experimental work. It was further shown that the critical strain energy release rate for crack initiation in a healthy joint is much higher compared to a degraded joint. The analytical models become cumbersome if a larger number of factors have to be taken into account. Numerical methods like finite element analysis are found to be promising in overcoming these hurdles. Numerical investigation using 3D finite element analysis was carried out on CFRP-epoxy adhesive joints. The adherend – adhesive interface was modeled using connector elements whose stiffness properties as well as the bulk adhesive properties for joints with different amounts of PVA were determined using ultrasonic inspection method. The peel and shear stress variation along the adhesive bond line showed a similar trend as observed with the experimental stress distribution (DIC) but with a lesser magnitude. A parametric study using finite element based Monte-Carlo simulation was carried out to assess the effect of variation in various joint parameters like adhesive modulus, bondline thickness, adherend geometrical and material properties on peel and shear stress in the joint. It was found that the adhesive modulus and bond line thickness had a significant influence on the magnitude of stresses developed in the bond line. Thus, to summarize, an attempt has been made to study the bond line integrity of a composite epoxy adhesive lap joint using experimental, analytical and numerical approaches. Advanced NDE tools like oblique incidence ultrasound, non linear ultrasound, Lamb wave inspection and digital image correlation have been used to extract parameters which can be used to evaluate composite bonded joints. The results obtained and reported in the thesis have been encouraging and indicate that in specific cases where the bond line thickness and other relevant parameters if can be maintained or presumed reasonably non variant, it is possible to effectively evaluate the integrity of a composite bonded joint.

Page generated in 0.1456 seconds