• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Composite skid landing gear design investigation

Shrotri, Kshitij 27 June 2008 (has links)
A composite skid landing gear design investigation has been conducted. Limit Drop Test as per Federal Aviation Regulations (FAR) Part 27.725 and Crash test as per MIL STD 1290A (AV) were simulated using ABAQUS to evaluate performance of multiple composite fiber-matrix systems. Load factor developed during multiple landing scenarios and energy dissipated during crash were computed. Strength and stiffness based constraints were imposed. Tsai-Wu and LaRC04 physics based failure criteria were used for limit loads. Hashin s damage initiation criteria with Davila-Camanho s energy based damage evolution law were used for crash. Initial results indicate that an all single-composite skid landing gear may not be feasible due to strength concerns in the cross member bends. Hybridization of multiple composites with elasto-plastic aluminum 7075 showed proof of strength under limit loads. Laminate tailoring for load factor optimization under limit loads was done by parameterization of a single variable fiber orientation angle for multiple laminate families. Tsai-Wu failure criterion was used to impose strength constraints. A quasi-isotropic N = 4 (pi/4) 48 ply IM7/8552 laminate was shown to be the optimal solution with a load factor under level landing condition equaling 4.17g s. LaRC04 predicts that failures will be initiated as matrix cracking under compression and fiber kinking under in-plane shear and longitudinal compression. All failures under limit loads being reported in the metal-composite hybrid joint, the joint was simulated by adhesive bonding and filament winding, separately. Simply adhesive bonding the metal and composite regions does not meet strength requirements. Filament wound bolted metal-composite joint shows proof of strength. Filament wound composite bolted to metal cross member radii is the final joining methodology. Finally, crash analysis was conducted as per requirements from MIL STD 1290A (AV). Crash at 42 ft/sec with 1 design gross weight (DGW) lift was simulated using ABAQUS. Plastic and friction energy dissipation in the reference aluminum skid landing gear were compared with plastic, friction and damage energy dissipation in the hybrid metal-composite design. Damage in composites was modeled as progressive damage with Hashin s damage initiation criteria and Davila-Camanho s energy based damage evolution law. The latter meets requirements of aircraft kinetic energy dissipation up to 20 ft/sec (67.6 kJ) as per MIL STD 1290A (AV). Weight saving possibility of up to 49% over conventional metal skid landing gear is reported. The final design recommended includes Ke49/PEEK skids, 48 ply IM7/8552 cross member tapered beams and, Al 7075 cross member bend radii bolted to the filament wound composite tapered beam. Concerns in composite skid landing gear designs, testing requirements and future opportunities are addressed.

Page generated in 0.0773 seconds