Spelling suggestions: "subject:"composite materials -- ringduring"" "subject:"eomposite materials -- ringduring""
1 |
A cure process model for resin transfer molding of advanced compositesClaus, Steven J. January 1989 (has links)
The resin transfer molding (RTM) process has been identified as a cost-effective fabrication technique for producing composite materials from geometrically complex reinforcements. Processing models can be used to determine the temperature and pressure cycles which will produce a finished part with the best properties in the shortest time. This work involved the development and verification of a processing model for RTM.
The processing model is based on the assumption that infiltration can be described as flow through a porous medium. Flow through porous media, as governed by D’Arcy’s law, depends on the viscosity of the fluid and the microstructure of the interconnected pores. Infiltration by thermosetting resin systems is assumed to behave as a Newtonian fluid with a time and temperature dependent viscosity. The kinetics of the resin can be described by mathematical expressions determined from standard thermal analysis techniques. The reinforcement is assumed to be a homogenous, anisotropic material which exhibits strain stiffening, hysteresis and plastic deformation. D’Arcy’s law describes the porous material in terms of the material permeability. Kozeny-Carman’s relationship is used to relate the porosity to the permeability. Solution of D’Arcy’s law is accomplished in a quasi-steady state manner by an evolving mesh finite element technique.
After infiltration is completed, the model continues to predict the temperature, degree of cure and viscosity of the resin. The equations governing the unsteady heat transfer are solved with an existing cure model by the finite difference method. Results of the processing model include estimates of infiltration, gel and cure times as well as the cured thickness and fiber volume fraction. Test laminates were fabricated, mechanically tested, and compared to prepregged laminate results. Construction of one of the test laminates was simulated with the processing model to verify the accuracy of the simulation. / Master of Science
|
2 |
Design and development of an automated temperature controller for curing ovensSchoeman, Ruaan Mornè 12 1900 (has links)
Thesis (M. Tech. - Engineering: Electrical, Department Electronic Engineering, Faculty of Engineering and Technology)--Vaal University of Technology. / Curing of materials in order to obtain different properties has been a practice for many years.
New developments in composite materials increase the need to control certain variables
during the curing process. One very significant variable is temperature. Temperature control
by itself is an old practice, however when the need for repeatedly controlling the process
accurately over long periods of time arises, a system is required that outperforms normal
manual control.
One of the aspects within such a system that needs to be considered is the ability to
replicate the temperatures within an oven which were originally used for a specific material’s
curing profile. This means that a curing profile would need to be defined, saved for later and
finally be interpreted correctly by the controlling system.
Different control methods were simulated to enable the system to control the temperature
which has been defined by literature. This dissertation introduces a variation on the
standard control methods and shows improved results.
Switching the oven on and off in order to increase or decrease internal oven temperature
seems simple, but can cause switching devices to decrease their operational life span, if not
designed carefully. A combination switch was introduced which harnesses the advantages
of two very common switching devices to form an improved combination switch.
Software for the personal computer environment, as well as software for the embedded
environment were developed and formed a control system that produced acceptable results
for temperature control. Accuracies of 98% and more were achieved and found to be
acceptable according to standard engineering control practices.
An accurate temperature profile controller was designed, simulated and built in order to
control the temperature inside a specific curing oven which, in turn, determined the curing
properties of specific materials. The overall results were satisfactory which lead to achieving
the objectives outlined in this dissertation.
|
Page generated in 0.1102 seconds