Spelling suggestions: "subject:"composite materials -- delamination"" "subject:"composite materials -- relamination""
1 |
Delamination properties of a vinyl-ester/glass fibre composite toughened by particle-modified interlayersStevanović, Dejan. January 2001 (has links)
No description available.
|
2 |
Interlaminar fracture behavior of woven fabric composites and mode III delamination analysisZhao, Dongming 12 1900 (has links)
No description available.
|
3 |
Effect of transverse shear on the postbuckling and growth characteristics of delaminated compositesFerrie, Catherine H. 12 1900 (has links)
No description available.
|
4 |
Process modeling and interfacial delamination in peripheral array packagesHarries, Richard 08 1900 (has links)
No description available.
|
5 |
<>.Tan, Xinyuan. January 2008 (has links)
Thesis (Ph.D)--Aerospace Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Armanios, Erian; Committee Member: Dancila, D. Stefan; Committee Member: Declercq, Nico F.; Committee Member: Haj-Ali, Rami; Committee Member: Johnson, W. Steven. Part of the SMARTech Electronic Thesis and Dissertation Collection. Non-Latin script record
|
6 |
Transient response of delamination, intersecting and transverse cracks in layered composite platesAwal, Mohammad A., 1959- January 1989 (has links)
A numerical method is developed to determine the dynamic behavior of delamination and transverse cracks in multilayered plates. The plate is subjected to a time dependent antiplane shear stress field which is acting on the plate surfaces. The interaction of waves diffracted at the crack tip with those reflected at the plate boundaries and transmitted at the material interface makes the problem very complicated, so analytical study of this problem cannot be carried out with our present state of knowledge; hence the problem is solved numerically. The finite element equations are obtained by variational calculus applied in the frequency domain. Thus time intregration schemes are avoided, but time dependent response can still be obtained after inverting the frequency dependent response spectra numerically by Fast Fourier Transform (FFT) routine. Another advantage of the frequency domain analysis is that the resonance frequency can be easily detected from the sharp peaks of the response spectra. The numerical difficulty associated with the singular behavior of the stress field near the crack tip has been avoided by using quarter point elements. The numerical results obtained from this investigation are compared with analytical results to verify the accuracy of the method.
|
7 |
Crack branching in cross-ply compositesLa Saponara, Valeria 05 1900 (has links)
No description available.
|
8 |
Analysis of damage in composite laminates under bendingKuriakose, Sunil 05 1900 (has links)
No description available.
|
9 |
Single and multiple delamination behavior in composite platesHuang, Haiying 12 1900 (has links)
No description available.
|
10 |
The effect of R-ratio on the mode II fatigue delamination growth of unidirectional carbon/epoxy compositesGambone, Livio R. January 1991 (has links)
An investigation of the effect of R-ratio on the mode II fatigue delamination of AS4/3501-6 carbon/epoxy composites has been undertaken. Experiments have been performed on end notched cantilever beam specimens over a wide range of R-ratios (-l ≤R ≤0.50). The measured delamination growth rate data have been correlated with the mode II values of strain energy release rate range ∆G[formula omitted]), maximum strain energy release rate (G[formula omitted]) and stress intensity factor range (∆K[formula omitted]). The growth rate is dependent on the R-ratio over the range tested. For a constant level of ∆G[formula omitted], the crack growth rate decreases with increasing R-ratio. A similar trend is observed when the data is plotted as a function of G[formula omitted]. The effect of plotting the growth rate as a function of ∆K[formula omitted] is to produce an R-ratio dependence opposite to that obtained by either the ∆G[formula omitted] or G[formula omitted] approach. For a constant level of ∆K[formula omitted], the crack growth rate increases with increasing R-ratio.
Master equations which completely characterize the fatigue behaviour as a function of ∆G[formula omitted] and ∆K[formula omitted] have been derived, based on the observation that the growth rate law exponent, n and constant, A are unique functions of R-ratio. Values for n are surprisingly large and increase with increasing R-ratio whereas values for A decrease with increasing R-ratio.
The effect of time-at-load has been considered in an attempt to explain the existence of the R-ratio dependence of the growth rate. The correct trend can be established for the exponent, n but not for the constant, A. Friction between the crack faces, particularly at higher R-ratios, is proposed as a possible explanation for the observed anomaly. Further evidence of a frictional mechanism operating at higher R-ratios has been discovered through a postmortem fracture surface examination.
Additional fractographic observations are presented over the entire range of R-ratios tested. In regions subjected to negative R-ratio cycling, there is no evidence of the characteristic mode II hackle features. Instead, loose rounded particles of matrix material are found. An extensive amount of hackling is observed in regions subjected to low positive R-ratio cycles. The extent of hackle damage visibly decreases in areas where higher levels of R-ratio are imposed. A correlation between the general fracture surface morphology and the fatigue data provides support for the hypothesis that energy for delamination is always available in sufficient quantity, and that growth is dependent on the stresses ahead of the crack tip being sufficiently high. / Applied Science, Faculty of / Materials Engineering, Department of / Graduate
|
Page generated in 0.1607 seconds