Spelling suggestions: "subject:"compost -- south africa"" "subject:"compost -- south affrica""
1 |
Propagating some commonly-used South African medicinal plants with compost and vermiteaFaulconbridge, Steven Craig January 2013 (has links)
The use of many of South Africa’s medicinal plants has shown marked increase with over 27 million users in South Africa alone. Most plants are still being unsustainably wild-harvested, a major concern for biodiversity conservation. Commercial interest in certain more commonly-used species has increased, with potential to cultivate medicinal plants on a more sustainable basis. Focus has shifted from conventional use of synthetic fertilisers, pesticides and fungicides to more organic methods of plant propagation. Aqueous extract derived from earthworm composted food waste (vermitea) was used to study the germination and rooting success of selected species. Also survival and growth performance of selected plants grown in a medium amended with commercial NPK fertiliser was compared to those grown in the same medium amended with compost and to those grown in the same medium amended with compost with weekly applications of vermitea. No change in germination success was noted. Vermitea showed promising results on the rooting of cuttings. The application of NPK improved growth performance (biomass) significantly for all species tested. However, they had lower root:shoot ratios as well as lower survival rates compared to plants under the compost and compost/vermitea treatments. The improved survival of these plants highlights the potential of these organic treatments on the propagation of selected medicinal plants.
|
2 |
Alternative practices for optimising soil quality and crop protection for macadamia orchards, Limpopo Province, South Africa.Steyn, Jakobus Nicolaas 30 September 2019 (has links)
Department of Ecology and Resource Management / PhDENV / The main aim of the research was to contribute means for converting conventional, high-input
production systems to more sustainable ecological systems, thereby improving the sustainability
of macadamia production and ultimately contributing to food security. This was achieved by a)
investigating the potential use of cover crops and compost to enhance soil quality in macadamia
orchards and b) investigating the potential use of use of cover crops and orchard heterogeneity to
control stinkbug pests that target macadamia crops.
Field experiments were conducted in three phases: phase one tested the potential of six cover
crops for crop protection (as trap crops) and simultaneously for soil restoration or fertility
enhancement purposes in macadamia orchards. Phase two repeated the trials of phase one (both
soil restoration and trap crops) but with modifications to both categories. Soil restoration
treatments were conducted with trees which were growing in what appeared to be healthy soils,
and then repeated with trees in the same orchard where the topsoil had been degraded (totally
removed) by agricultural operations. The third phase repeated the trap crop trials only, but this
time on three different study areas (all commercial farms) with the single cover crop which
performed the best as a trap crop during phase two. Trials were modified from the first to the last
phase to overcome practical implementation problems encountered along the way and to adapt to
local conditions experienced in the commercial macadamia farming systems which served as
research sites. Diversity of natural orchard vegetation was enhanced in phase three to improve
conditions for natural predators as part of the trap crop treatments in the last phase and cover
crops were finally first composted and then returned to the root zones of the macadamia trees as
part of the soil quality enhancement treatments in the second phase.
The results from the trap crop trials shows a significant effect of trap crops combined with
increased orchard diversity in reducing unsound kernel percentages caused by stinkbug pests and
demonstrate that trap crops combined with an increase in orchard diversity could be utilized in
macadamia orchards as a more sustainable alternative to inorganic pesticides against the stinkbug
complex.
The most notable changes in the soil that took place with soil quality enhancement treatments
were the significant increases in soil phosphorous content and pH which resulted not in an
improvement in soil quality in terms of these two indicators but revealed an important issue about
the use of compost containing animal manure originating from dairies or feedlots. In summary
however, it was clear that although not all the soil quality indicators that were employed to assess
changes in the soil with compost treatments improved significantly, a holistic consideration of all
indicators portrays an overall improvement which was particularly significant in the degraded soil
plots where the topsoil had been removed by prior agricultural activities. / NRF
|
3 |
Effects of macadamia husk compost on physicochemical soil properties, growth and yield of Chinese cabbage (Brassica rapa L. Chinesis) on sandy soilMaselesele, Dembe 07 1900 (has links)
MSCAGR (Plant Production) / Department of Plant Production / Poor soil fertility caused by inadequate supply of nutrients on soil is one of the major constraints limiting crop production especially in the Vhembe District Municipality, Limpopo, South Africa. Therefore, management practices such as application of organic manure to minimize soil infertility is considered as good practice for smallholder farmers. This study aimed at evaluating the effect of macadamia husk compost on selected soil properties as well as the growth and yield of Chinese cabbage on sandy loam soil.
A field experiment was carried out during 2018 and 2019 winter season at the Agricultural Research Council (ARC) research farm in Levubu. The experiment was laid out in a randomized complete block design (RCBD) with 4 treatments (control (zero)), inorganic fertilizer (100:60:60 NPK Kg ha-1) and compost at 15t ha-1 & 30t ha-1 replicated 3 times. Soil was analyzed before planting and after harvesting to determine the influence of applied compost on selected physical properties (soil bulk density and water holding capacity) and chemical properties (soil pH, soil organic matter, soil organic C, EC, total N, P, K, Ca, Mg, Na, Al, Zn and Mn). Number of leaves, fresh mass, dry mass and leaf area was collected at three harvests interval (28, 46 and 74 days after transplanting). After each harvest period, leaves were analysed for nutrient content (N, P, K, Ca, Mg, Zn, Cu, Mn and B). During the final harvest crops were uprooted and root biomass (fresh mass, dry mass and root length) were recorded. Analysis of variance (ANOVA) were conducted on all data using Genstat package 18th addition. Differences between treatment means were separated using the least significant differences (LSD) procedure and correlations analysis was determined using Pearson’s simple correlation coefficient.
Macadamia husk compost application had a significant effect on soil bulk density and water holding capacity. Addition of macadamia husk compost significantly increased soil pH, OC, N, C: N K, P, Mg, Ca, Na, Al, Zn, Ca and Mn. In contrast, addition of macadamia husk compost had no effect on soil EC. Yield components (number of leaves, fresh mass, dry mass), root biomass, root length and leaf area increased with application of macadamia husk compost. Yield components, root biomass, root length and leaf area were significantly affected (p<0.01) by harvesting time. Yield components in the second cropping season was greater than yield components in the first season. Macadamia husk compost application showed no significant effect on leaf nutrient content of Chinese cabbage. However, leaf nutrient content was affected by harvesting time.
It is evident from the results of this study that macadamia husk compost affects soil fertility and plant production. The results suggest that macadamia husk compost has a potential to be used as a reliable fertilizer by famers especially smallholder farmers who struggle to buy inorganic fertilizer because they are expensive. Since this study was conducted over two seasons and compost effect tend to be long term, further research is needed on application of macadamia husk compost on soil properties and yield of other crops over wide range of soils. / NRF
|
Page generated in 0.0378 seconds