• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • Tagged with
  • 15
  • 15
  • 12
  • 12
  • 12
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Perda de energia e fragmentação de íons moleculares em cristais

Fadanelli Filho, Raul Carlos January 2005 (has links)
Os fenômenos decorrentes da interação entre íons monoatômicos e a matéria têm sido amplamente estudados há décadas. No entanto, um esforço comparativamente menor tem sido despendido no estudo dos fenômenos decorrentes da interação entre feixes moleculares e a matéria, especialmente quando o alvo do feixe é um sólido cristalino. Tais fenômenos, como a transferência de energia entre o feixe e a matéria, a emissão de raios X induzidos pelos feixes e a geração de produtos de reação nuclear sofrem importantes modificações no caso de feixes moleculares. Essas alterações estão longe de ser explicadas por uma simples soma dos efeitos causados pelos componentes individuais do aglomerado iônico. Em particular, no caso de interação com sólidos cristalinos, a fragmentação dos aglomerados causada pela explosão coulombiana causa importantes efeitos sobre o fluxo de íons ao longo do sólido. Finalmente, efeitos de vizinhança entre os componentes do aglomerado alteram sensivelmente o valor da energia transferida entre este e o sólido. Na descrição desses fenômenos, empregou-se, neste trabalho, de um lado, a construção de um modelo teórico para a perda de energia de aglomerados e, de outro, técnicas experimentais envolvendo contagens de retroespalhamento, indução de raios X pelo feixe de íons e geração de produtos de reação nuclear por feixes de H+, H2 + e H3 + em Si e SIMOX. Como elo entre teoria e experimento, empregaram-se simulações que descrevem a interação entre os íons moleculares e o alvo. Pela primeira vez, alterações de fluxo de íons causadas pela explosão coulombiana foram quantificadas, valores de perda de energia foram obtidos e, finalmente, uma nova expressão simplificada para a transferência de energia foi obtida. / Ion induced phenomena in matter have been studied for many decades. However, a comparatively minor effort was done in the subject of the interaction of molecular ions with the matter, especially for crystalline solid targets. Such phenomena, for instance, the energy transfer between ions and matter, the ion beam induced X ray emission and the nuclear reaction yield undergo important modifications under molecular ion bombardment. These modifications cannot be explained by the sum of effects induced by each ion component of the ionic cluster. Moreover, for the interaction between the cluster beam and crystalline solids, the cluster breakup induced by the Coulomb explosion leads to important effects in the ion flux distribution along the solid. Finally, vicinage effects among the cluster components change the energy transfer between this cluster and the solid. In order to describe those phenomena in this work, we have used, firstly, coupledchannel calculations to describe the cluster energy transfer, and developed a simple energy loss model. Secondly, backscattering, particle induced X ray emission and nuclear reaction analysis experiments have been measured for H+, H2 + and H3 + beams in Si and SIMOX targets. As a link between theory and experiments, we have performed computer simulations to describe the full interaction between the molecular ions and the target atoms. For the first time, cluster ion flux changes induced by the Coulomb explosion were quantified and, finally, a new simple expression for the cluster energy transfer was developed.
2

Formação de ilhas metálicas de Sn e Pb em interfaces SiO2/Si e SiO2/Si3N4 via implantação iônica e tratamento térmico

Kremer, Felipe January 2010 (has links)
Neste trabalho estudou-se a estruturação de partículas de Sn ou Pb em interfaces SiO2/Si e SiO2/Si3N4 pela técnica de implantação iônica seguida de tratamento térmico em alta temperatura. A formação de partículas de Sn em interfaces SiO2/Si foi estuda em função do tempo de recozimento em fluxo de N2. Os dados experimentais demonstraram que este método leva a formação de partículas com bases quadradas de ≈ 8,0 nm de largura que crescem epitaxialmente a partir do substrato de Si. Os resultados foram discutidos com base nas propriedades de equilíbrio do sistema Si-Sn bem como em argumentos cinéticos referentes à redistribuição dos átomos implantados. A influência da inclusão de uma etapa de tratamento térmico de envelhecimento em baixas temperaturas antes do recozimento necessário para a formação de partículas na interface foi também estudada. Foi demonstrado, de forma pioneira, a possibilidade de estruturar exclusivamente a região da interface SiO2/Si via implantação iônica. Os resultados foram discutidos considerando um modelo fenomenológico baseado em argumentos termodinâmicos relacionados à dependência da energia de interface partícula/matriz com o tamanho de partículas que podem resultar em pequenas partículas de Sn possuindo elevada estabilidade térmica. Em particular demonstrou-se de maneira inédita que o método de envelhecimento seguido de recozimento em altas temperaturas é capaz de produzir filmes cuja intensidade da resposta luminescente é o dobro das camadas não submetidas a esse processamento. A nucleação e crescimento de partículas de Sn em interfaces SiO2/Si3N4 também foi estudada. Esse sistema é interessante, pois permite a aplicação do processo de síntese de partículas por implantação iônica na elaboração de dispositivos de memória tipo flash. Além disso, esse estudo evidenciou a possibilidade de modificar a distribuição em tamanhos das partículas formadas na interface SiO2/Si3N4 pela aplicação de um segundo recozimento em alta temperatura, aumentando assim o controle sobre as estruturas formadas na interface SiO2/Si3N4. O estudo nanopartículas de Pb em interfaces SiO2/Si(100) demonstrou a formação de partículas com tamanhos menores que 7,0 nm. Essa investigação mostrou a tendência das partículas de se enterrarem no substrato de Si quando utilizados recozimentos de longa duração. Essas partículas enterradas no Si exibem estruturas piramidais cujas bases são quadradas e suas faces formam interfaces com os planos [111] do substrato de Si. Aumentando a quantidade de Pb transferida para a interface SiO2/Si(100) resultou na formação de partículas com duas fases do tipo caroço/casca. Nesse caso o caroço é composto de Pb metálico enquanto a casca é composta provavelmente por uma liga Pb-Si. Diferentemente desse cenário a formação de ilhas em interfaces SiO2/Si(111) demonstrou a possibilidade de formar pela técnica de implantação iônica, estruturas com geometria de calota esférica e que exibem comportamento de crescimento competitivo (Ostwald ripening), onde as partículas menores se dissolvem alimentando o crescimento das maiores. / In this work the formation of Sn or Pb nanoparticles at SiO2/Si and SiO2/Si3N4 interfaces through the technique of ion implantation followed by high temperature heat treatments was studied. The formation of Sn particles at SiO/Si interfaces was studied as a function of the annealing time in N2 flux. The experimental data show that this method leads to the formation of square based particles with ≈ 8,0 nm in length that grow epitaxially attached to the Si substrate. The results were discussed considering the equilibrium properties of the Si-Sn system as well as kinetic arguments related to the implanted atoms redistribution. The inclusion of a low temperature aging step prior to the high temperature thermal annealing was also studied. This work demonstrated for the first time the possibility to form nanoparticles exclusively at the SiO2/Si interface region. The results are interpreted in terms of a phenomenological model based on thermodynamic concepts related to the particle/matrix interface free energy dependence with size, leading to small Sn particles with enhanced thermal stability. The optical response of Sn implanted SiO2/Si was also studied. In particular it was demonstrated that the aging step, followed by high temperature annealing, is capable to produce films with the luminescent intensity response twice the intensity obtained from non aged samples. The nucleation and growth of Sn particles at SiO2/Si3N4 interfaces was also studied. This system is particularly interesting because it allows the application of the ion implantation nanoparticle formation process to the production of flash memory devices. In addition, this study has shown the possibility to modify particle size distribution of the nanoparticles formed at the SiO2/Si3N4 interface by applying a second high temperature annealing step, increasing the control over the structures formed at the SiO2/Si3N4 interface. The studies related to the formation of Pb particles at SiO2/Si(100) interfaces demonstrated the possibility to produce particles with less than 7,0 nm in size. This investigation showed that for longer annealing times the particles form buried structures inside the Si substrate. These nanoparticles embedded to the Si substrate display pyramidal structures with square basis and interfaces with the silicon substrate [111] planes. Increasing the amount of Pb transferred to the SiO2/Si(100) interface resulted in the formation of particles showing two phases with a core/shell structure. In this case the core is made of pure metallic Pb while the shell is probably formed by an Pb-Si alloy. As opposed to this scenario the formation of islands in SiO2/Si(111) interfaces demonstrated the possibility to form nanoparticles with spherical cap structure using ion implantation. In this case the particles coarsening behavior can be described by the competitive coarsening theory, where the small particles dissolve feeding the growth of the larger ones.
3

Perda de energia e fragmentação de íons moleculares em cristais

Fadanelli Filho, Raul Carlos January 2005 (has links)
Os fenômenos decorrentes da interação entre íons monoatômicos e a matéria têm sido amplamente estudados há décadas. No entanto, um esforço comparativamente menor tem sido despendido no estudo dos fenômenos decorrentes da interação entre feixes moleculares e a matéria, especialmente quando o alvo do feixe é um sólido cristalino. Tais fenômenos, como a transferência de energia entre o feixe e a matéria, a emissão de raios X induzidos pelos feixes e a geração de produtos de reação nuclear sofrem importantes modificações no caso de feixes moleculares. Essas alterações estão longe de ser explicadas por uma simples soma dos efeitos causados pelos componentes individuais do aglomerado iônico. Em particular, no caso de interação com sólidos cristalinos, a fragmentação dos aglomerados causada pela explosão coulombiana causa importantes efeitos sobre o fluxo de íons ao longo do sólido. Finalmente, efeitos de vizinhança entre os componentes do aglomerado alteram sensivelmente o valor da energia transferida entre este e o sólido. Na descrição desses fenômenos, empregou-se, neste trabalho, de um lado, a construção de um modelo teórico para a perda de energia de aglomerados e, de outro, técnicas experimentais envolvendo contagens de retroespalhamento, indução de raios X pelo feixe de íons e geração de produtos de reação nuclear por feixes de H+, H2 + e H3 + em Si e SIMOX. Como elo entre teoria e experimento, empregaram-se simulações que descrevem a interação entre os íons moleculares e o alvo. Pela primeira vez, alterações de fluxo de íons causadas pela explosão coulombiana foram quantificadas, valores de perda de energia foram obtidos e, finalmente, uma nova expressão simplificada para a transferência de energia foi obtida. / Ion induced phenomena in matter have been studied for many decades. However, a comparatively minor effort was done in the subject of the interaction of molecular ions with the matter, especially for crystalline solid targets. Such phenomena, for instance, the energy transfer between ions and matter, the ion beam induced X ray emission and the nuclear reaction yield undergo important modifications under molecular ion bombardment. These modifications cannot be explained by the sum of effects induced by each ion component of the ionic cluster. Moreover, for the interaction between the cluster beam and crystalline solids, the cluster breakup induced by the Coulomb explosion leads to important effects in the ion flux distribution along the solid. Finally, vicinage effects among the cluster components change the energy transfer between this cluster and the solid. In order to describe those phenomena in this work, we have used, firstly, coupledchannel calculations to describe the cluster energy transfer, and developed a simple energy loss model. Secondly, backscattering, particle induced X ray emission and nuclear reaction analysis experiments have been measured for H+, H2 + and H3 + beams in Si and SIMOX targets. As a link between theory and experiments, we have performed computer simulations to describe the full interaction between the molecular ions and the target atoms. For the first time, cluster ion flux changes induced by the Coulomb explosion were quantified and, finally, a new simple expression for the cluster energy transfer was developed.
4

Formação de ilhas metálicas de Sn e Pb em interfaces SiO2/Si e SiO2/Si3N4 via implantação iônica e tratamento térmico

Kremer, Felipe January 2010 (has links)
Neste trabalho estudou-se a estruturação de partículas de Sn ou Pb em interfaces SiO2/Si e SiO2/Si3N4 pela técnica de implantação iônica seguida de tratamento térmico em alta temperatura. A formação de partículas de Sn em interfaces SiO2/Si foi estuda em função do tempo de recozimento em fluxo de N2. Os dados experimentais demonstraram que este método leva a formação de partículas com bases quadradas de ≈ 8,0 nm de largura que crescem epitaxialmente a partir do substrato de Si. Os resultados foram discutidos com base nas propriedades de equilíbrio do sistema Si-Sn bem como em argumentos cinéticos referentes à redistribuição dos átomos implantados. A influência da inclusão de uma etapa de tratamento térmico de envelhecimento em baixas temperaturas antes do recozimento necessário para a formação de partículas na interface foi também estudada. Foi demonstrado, de forma pioneira, a possibilidade de estruturar exclusivamente a região da interface SiO2/Si via implantação iônica. Os resultados foram discutidos considerando um modelo fenomenológico baseado em argumentos termodinâmicos relacionados à dependência da energia de interface partícula/matriz com o tamanho de partículas que podem resultar em pequenas partículas de Sn possuindo elevada estabilidade térmica. Em particular demonstrou-se de maneira inédita que o método de envelhecimento seguido de recozimento em altas temperaturas é capaz de produzir filmes cuja intensidade da resposta luminescente é o dobro das camadas não submetidas a esse processamento. A nucleação e crescimento de partículas de Sn em interfaces SiO2/Si3N4 também foi estudada. Esse sistema é interessante, pois permite a aplicação do processo de síntese de partículas por implantação iônica na elaboração de dispositivos de memória tipo flash. Além disso, esse estudo evidenciou a possibilidade de modificar a distribuição em tamanhos das partículas formadas na interface SiO2/Si3N4 pela aplicação de um segundo recozimento em alta temperatura, aumentando assim o controle sobre as estruturas formadas na interface SiO2/Si3N4. O estudo nanopartículas de Pb em interfaces SiO2/Si(100) demonstrou a formação de partículas com tamanhos menores que 7,0 nm. Essa investigação mostrou a tendência das partículas de se enterrarem no substrato de Si quando utilizados recozimentos de longa duração. Essas partículas enterradas no Si exibem estruturas piramidais cujas bases são quadradas e suas faces formam interfaces com os planos [111] do substrato de Si. Aumentando a quantidade de Pb transferida para a interface SiO2/Si(100) resultou na formação de partículas com duas fases do tipo caroço/casca. Nesse caso o caroço é composto de Pb metálico enquanto a casca é composta provavelmente por uma liga Pb-Si. Diferentemente desse cenário a formação de ilhas em interfaces SiO2/Si(111) demonstrou a possibilidade de formar pela técnica de implantação iônica, estruturas com geometria de calota esférica e que exibem comportamento de crescimento competitivo (Ostwald ripening), onde as partículas menores se dissolvem alimentando o crescimento das maiores. / In this work the formation of Sn or Pb nanoparticles at SiO2/Si and SiO2/Si3N4 interfaces through the technique of ion implantation followed by high temperature heat treatments was studied. The formation of Sn particles at SiO/Si interfaces was studied as a function of the annealing time in N2 flux. The experimental data show that this method leads to the formation of square based particles with ≈ 8,0 nm in length that grow epitaxially attached to the Si substrate. The results were discussed considering the equilibrium properties of the Si-Sn system as well as kinetic arguments related to the implanted atoms redistribution. The inclusion of a low temperature aging step prior to the high temperature thermal annealing was also studied. This work demonstrated for the first time the possibility to form nanoparticles exclusively at the SiO2/Si interface region. The results are interpreted in terms of a phenomenological model based on thermodynamic concepts related to the particle/matrix interface free energy dependence with size, leading to small Sn particles with enhanced thermal stability. The optical response of Sn implanted SiO2/Si was also studied. In particular it was demonstrated that the aging step, followed by high temperature annealing, is capable to produce films with the luminescent intensity response twice the intensity obtained from non aged samples. The nucleation and growth of Sn particles at SiO2/Si3N4 interfaces was also studied. This system is particularly interesting because it allows the application of the ion implantation nanoparticle formation process to the production of flash memory devices. In addition, this study has shown the possibility to modify particle size distribution of the nanoparticles formed at the SiO2/Si3N4 interface by applying a second high temperature annealing step, increasing the control over the structures formed at the SiO2/Si3N4 interface. The studies related to the formation of Pb particles at SiO2/Si(100) interfaces demonstrated the possibility to produce particles with less than 7,0 nm in size. This investigation showed that for longer annealing times the particles form buried structures inside the Si substrate. These nanoparticles embedded to the Si substrate display pyramidal structures with square basis and interfaces with the silicon substrate [111] planes. Increasing the amount of Pb transferred to the SiO2/Si(100) interface resulted in the formation of particles showing two phases with a core/shell structure. In this case the core is made of pure metallic Pb while the shell is probably formed by an Pb-Si alloy. As opposed to this scenario the formation of islands in SiO2/Si(111) interfaces demonstrated the possibility to form nanoparticles with spherical cap structure using ion implantation. In this case the particles coarsening behavior can be described by the competitive coarsening theory, where the small particles dissolve feeding the growth of the larger ones.
5

Formação de ilhas metálicas de Sn e Pb em interfaces SiO2/Si e SiO2/Si3N4 via implantação iônica e tratamento térmico

Kremer, Felipe January 2010 (has links)
Neste trabalho estudou-se a estruturação de partículas de Sn ou Pb em interfaces SiO2/Si e SiO2/Si3N4 pela técnica de implantação iônica seguida de tratamento térmico em alta temperatura. A formação de partículas de Sn em interfaces SiO2/Si foi estuda em função do tempo de recozimento em fluxo de N2. Os dados experimentais demonstraram que este método leva a formação de partículas com bases quadradas de ≈ 8,0 nm de largura que crescem epitaxialmente a partir do substrato de Si. Os resultados foram discutidos com base nas propriedades de equilíbrio do sistema Si-Sn bem como em argumentos cinéticos referentes à redistribuição dos átomos implantados. A influência da inclusão de uma etapa de tratamento térmico de envelhecimento em baixas temperaturas antes do recozimento necessário para a formação de partículas na interface foi também estudada. Foi demonstrado, de forma pioneira, a possibilidade de estruturar exclusivamente a região da interface SiO2/Si via implantação iônica. Os resultados foram discutidos considerando um modelo fenomenológico baseado em argumentos termodinâmicos relacionados à dependência da energia de interface partícula/matriz com o tamanho de partículas que podem resultar em pequenas partículas de Sn possuindo elevada estabilidade térmica. Em particular demonstrou-se de maneira inédita que o método de envelhecimento seguido de recozimento em altas temperaturas é capaz de produzir filmes cuja intensidade da resposta luminescente é o dobro das camadas não submetidas a esse processamento. A nucleação e crescimento de partículas de Sn em interfaces SiO2/Si3N4 também foi estudada. Esse sistema é interessante, pois permite a aplicação do processo de síntese de partículas por implantação iônica na elaboração de dispositivos de memória tipo flash. Além disso, esse estudo evidenciou a possibilidade de modificar a distribuição em tamanhos das partículas formadas na interface SiO2/Si3N4 pela aplicação de um segundo recozimento em alta temperatura, aumentando assim o controle sobre as estruturas formadas na interface SiO2/Si3N4. O estudo nanopartículas de Pb em interfaces SiO2/Si(100) demonstrou a formação de partículas com tamanhos menores que 7,0 nm. Essa investigação mostrou a tendência das partículas de se enterrarem no substrato de Si quando utilizados recozimentos de longa duração. Essas partículas enterradas no Si exibem estruturas piramidais cujas bases são quadradas e suas faces formam interfaces com os planos [111] do substrato de Si. Aumentando a quantidade de Pb transferida para a interface SiO2/Si(100) resultou na formação de partículas com duas fases do tipo caroço/casca. Nesse caso o caroço é composto de Pb metálico enquanto a casca é composta provavelmente por uma liga Pb-Si. Diferentemente desse cenário a formação de ilhas em interfaces SiO2/Si(111) demonstrou a possibilidade de formar pela técnica de implantação iônica, estruturas com geometria de calota esférica e que exibem comportamento de crescimento competitivo (Ostwald ripening), onde as partículas menores se dissolvem alimentando o crescimento das maiores. / In this work the formation of Sn or Pb nanoparticles at SiO2/Si and SiO2/Si3N4 interfaces through the technique of ion implantation followed by high temperature heat treatments was studied. The formation of Sn particles at SiO/Si interfaces was studied as a function of the annealing time in N2 flux. The experimental data show that this method leads to the formation of square based particles with ≈ 8,0 nm in length that grow epitaxially attached to the Si substrate. The results were discussed considering the equilibrium properties of the Si-Sn system as well as kinetic arguments related to the implanted atoms redistribution. The inclusion of a low temperature aging step prior to the high temperature thermal annealing was also studied. This work demonstrated for the first time the possibility to form nanoparticles exclusively at the SiO2/Si interface region. The results are interpreted in terms of a phenomenological model based on thermodynamic concepts related to the particle/matrix interface free energy dependence with size, leading to small Sn particles with enhanced thermal stability. The optical response of Sn implanted SiO2/Si was also studied. In particular it was demonstrated that the aging step, followed by high temperature annealing, is capable to produce films with the luminescent intensity response twice the intensity obtained from non aged samples. The nucleation and growth of Sn particles at SiO2/Si3N4 interfaces was also studied. This system is particularly interesting because it allows the application of the ion implantation nanoparticle formation process to the production of flash memory devices. In addition, this study has shown the possibility to modify particle size distribution of the nanoparticles formed at the SiO2/Si3N4 interface by applying a second high temperature annealing step, increasing the control over the structures formed at the SiO2/Si3N4 interface. The studies related to the formation of Pb particles at SiO2/Si(100) interfaces demonstrated the possibility to produce particles with less than 7,0 nm in size. This investigation showed that for longer annealing times the particles form buried structures inside the Si substrate. These nanoparticles embedded to the Si substrate display pyramidal structures with square basis and interfaces with the silicon substrate [111] planes. Increasing the amount of Pb transferred to the SiO2/Si(100) interface resulted in the formation of particles showing two phases with a core/shell structure. In this case the core is made of pure metallic Pb while the shell is probably formed by an Pb-Si alloy. As opposed to this scenario the formation of islands in SiO2/Si(111) interfaces demonstrated the possibility to form nanoparticles with spherical cap structure using ion implantation. In this case the particles coarsening behavior can be described by the competitive coarsening theory, where the small particles dissolve feeding the growth of the larger ones.
6

Perda de energia e fragmentação de íons moleculares em cristais

Fadanelli Filho, Raul Carlos January 2005 (has links)
Os fenômenos decorrentes da interação entre íons monoatômicos e a matéria têm sido amplamente estudados há décadas. No entanto, um esforço comparativamente menor tem sido despendido no estudo dos fenômenos decorrentes da interação entre feixes moleculares e a matéria, especialmente quando o alvo do feixe é um sólido cristalino. Tais fenômenos, como a transferência de energia entre o feixe e a matéria, a emissão de raios X induzidos pelos feixes e a geração de produtos de reação nuclear sofrem importantes modificações no caso de feixes moleculares. Essas alterações estão longe de ser explicadas por uma simples soma dos efeitos causados pelos componentes individuais do aglomerado iônico. Em particular, no caso de interação com sólidos cristalinos, a fragmentação dos aglomerados causada pela explosão coulombiana causa importantes efeitos sobre o fluxo de íons ao longo do sólido. Finalmente, efeitos de vizinhança entre os componentes do aglomerado alteram sensivelmente o valor da energia transferida entre este e o sólido. Na descrição desses fenômenos, empregou-se, neste trabalho, de um lado, a construção de um modelo teórico para a perda de energia de aglomerados e, de outro, técnicas experimentais envolvendo contagens de retroespalhamento, indução de raios X pelo feixe de íons e geração de produtos de reação nuclear por feixes de H+, H2 + e H3 + em Si e SIMOX. Como elo entre teoria e experimento, empregaram-se simulações que descrevem a interação entre os íons moleculares e o alvo. Pela primeira vez, alterações de fluxo de íons causadas pela explosão coulombiana foram quantificadas, valores de perda de energia foram obtidos e, finalmente, uma nova expressão simplificada para a transferência de energia foi obtida. / Ion induced phenomena in matter have been studied for many decades. However, a comparatively minor effort was done in the subject of the interaction of molecular ions with the matter, especially for crystalline solid targets. Such phenomena, for instance, the energy transfer between ions and matter, the ion beam induced X ray emission and the nuclear reaction yield undergo important modifications under molecular ion bombardment. These modifications cannot be explained by the sum of effects induced by each ion component of the ionic cluster. Moreover, for the interaction between the cluster beam and crystalline solids, the cluster breakup induced by the Coulomb explosion leads to important effects in the ion flux distribution along the solid. Finally, vicinage effects among the cluster components change the energy transfer between this cluster and the solid. In order to describe those phenomena in this work, we have used, firstly, coupledchannel calculations to describe the cluster energy transfer, and developed a simple energy loss model. Secondly, backscattering, particle induced X ray emission and nuclear reaction analysis experiments have been measured for H+, H2 + and H3 + beams in Si and SIMOX targets. As a link between theory and experiments, we have performed computer simulations to describe the full interaction between the molecular ions and the target atoms. For the first time, cluster ion flux changes induced by the Coulomb explosion were quantified and, finally, a new simple expression for the cluster energy transfer was developed.
7

Estudo das ressonâncias de plasmon em filmes silicatos com nanopartículas de Ag interagentes

Menegotto, Thiago January 2011 (has links)
Neste trabalho, estudou-se o comportamento da ressonância de plasmon de superfície de camadas de nanopartículas metálicas de prata envoltas por dióxido de silício ou sobre superfícies desse material. Os filmes produzidos tiveram suas propriedades estruturais caracterizadas por microscopia eletrônica de transmissão, enquanto as propriedades ópticas foram investigadas por espectrofotometria. As nanopartículas apresentaram diâmetro médio de 8 nm e a ressonância de plasmon desses filmes estava deslocada em relação à previsão teórica do modelo de Maxwell Garnett. Esse deslocamento ocorreu em direções contrárias, dependendo se a direção do campo elétrico está paralela ou perpendicular ao plano de partículas, e foi atribuído à transferência estática de cargas e à interação dipolar entre as nanopartículas no sistema. A transferência estática de cargas foi considerada com base em dados estabelecidos na literatura para prata envolta por SiO2, ao passo que duas abordagens foram utilizadas para simular a posição da ressonância de plasmon de tais filmes. Ambas abordagens estão inicialmente baseadas no modelo de Maxwell Garnett, mas considerando a função dielétrica do metal modificada pela interação dipolar entre as nanopartículas. O primeiro modelo proposto adaptou o termo ImA – originalmente sugerido para descrever o deslocamento da ressonância de plasmon devido aos estados adsorvidos na superfície – para ajustar e simular as propriedades dos filmes produzidos. Esse modelo apresentou bons resultados para o campo elétrico paralelo ao plano das partículas, sobretudo para os filmes de nanopartículas de prata enterradas em SiO2. Entretanto, a posição do pico de ressonância para o campo elétrico ortogonal ao plano das partículas prevista pelo método com ImA, a incidências oblíquas da luz, não está em concordância com a posição da ressonância medida. A segunda abordagem conectou o modelo de Maxwell Garnett à teoria dipolar de interação entre as partículas em sistemas bidimensionais, desenvolvida por Persson e Liebsch. Essa abordagem permitiu descrever corretamente a posição da ressonância de plasmon, tanto para acoplamento perpendicular, quanto paralelo do campo elétrico no filme com nanopartículas e possibilitou relacionar as características estruturais da amostra aos parâmetros de simulação. Os modelos também foram aplicados em uma amostra que apresentou significativa deterioração após sua produção. A comparação entre as simulações e os resultados experimentais foi bastante satisfatória, dentro das aproximações impostas pelo modelo utilizado, como distribuição uniforme de partículas idênticas. Isso indica que essas abordagens representam uma ferramenta muito útil para determinar o comportamento de dispositivos baseados em filmes finos com nanopartículas metálicas. / In this work, the behavior of surface plasmon resonance from layers of silver nanoparticles embedded in silicon dioxide or on surfaces of silicon dioxide was studied. Structural properties of the produced films were characterized by transmission electron microscopy, while the optical properties were studied with a spectrophotometer. Results showed average nanoparticle diameter of 8 nm and that the plasmon resonance was shifted with respect to the predicted theoretical value. This plasmon resonance shifted in opposite direction, depending if the direction of the wave electric field is parallel or perpendicular to the film. This shift was attributed to the static charge transfer and to the dipolar interaction between the nanoparticles in the sample. The static charge transfer was considered by taking into account data from literature for Ag in SiO2, while two approaches were used to simulate plasmon resonance position. Both approaches were initially based in the Maxwell Garnett Model, but considering a modified dielectric function for the metal due to the dipolar interaction between the nanoparticles. The first model suggested to use the term ImA, which was originally developed to describe shifts in plasmon resonance due to adsorbate surface states, in order to fit or simulate the properties of the films. This model showed good results especially for films with silver nanoparticles buried into silicon dioxide, when the electric field was parallel to its plane. But, the position of the peak when the field is perpendicular to the film plane, at oblique incident angles, was not in accordance with the measured peak position. A second approach was developed aiming to connect Maxwell Garnett model to the theory of dipolar interaction between particles in bidimensional samples, developed by Persson and Liebsch. This approach allowed describing correctly the position of surface plasmon resonance for both, parallel or perpendicular coupling of electrical field in the film. It also allowed relating structural properties of the sample to the parameters of simulation. The presented model was also applied for a sample which presented significative deterioration. Comparison between simulated and experimental results is satisfactory within the limitation of the applied model (uniform distribution of identical particles). This indicates that this approach can represent a tool for predicting the behavior of devices based in thin films of metallic nanoparticles.
8

Estabilidade de nanopartículas em sílica : efeitos térmicos e de irradiação com elétrons e íons energéticos

Luce, Flavia Piegas January 2012 (has links)
Por apresentarem uma alta razão de área de interface por volume, sistemas de nanopartículas são termodinamicamente instáveis e podem perder suas vantagens funcionais em função de modificações estruturais induzidas por variações de parâmetros intensivos do ambiente de aplicação. O presente trabalho trata do estudo da estabilidade estrutural de sistemas densos de nanopartículas de Pb embebidos em substratos de sílica frente às variações de temperatura e a exposição à irradiação com elétrons e íons energéticos. Substratos de SiO2/Si foram implantados com íons de Pb e submetidos à diferentes condições de tratamento térmico e irradiações com elétrons e íons pesados. Evoluções microestruturais foram acompanhadas através de medidas de espectrometria de retroespalhamento Rutherford e por análises de microscopia eletrônica de transmissão em modo convencional e in-situ, acompanhando em tempo real as mudanças introduzidas pelo aquecimento e bombardeamentos iônico e eletrônico. A síntese das amostras segue uma rota alternativa, desenvolvida no próprio grupo de pesquisa, que resulta na formação de aglomerados atômicos com diâmetros de 1 nm ou inferiores, os quais são altamente estáveis e só se dissociam em temperaturas de ≈ 600 °C acima da temperatura de fusão do Pb massivo. Em contraste com a literatura, apresenta-se um modelo que explica a alta estabilidade térmica desses aglomerados como consequência da formação de interfaces com menor energia livre, e não somente em função do tipo de arranjo estrutural ou do fortalecimento das ligações químicas entre os átomos do aglomerado. Além disso, os resultados mostram que o sistema de aglomerados evolui de maneira peculiar quando submetido simultaneamente a recozimentos e a irradiações em alta temperatura. Em particular, demonstra-se que a irradiação com elétrons do próprio feixe do microscópio, que ocorre durante observações com recozimento in-situ, afeta tanto os processos de difusão atômica como os de nucleação e crescimento de nanopartículas. Os experimentos in-situ possibilitam observar o comportamento de partículas individuais com tamanhos da ordem de 3 a 15 nm de diâmetro a temperaturas entre 30 e 1100 °C. As medidas registradas em vídeo mostram que, para temperaturas acima de 400 °C, partículas com diâmetro maior que 3 nm estão na fase líquida e migram pela matriz sólida apresentando um movimento do tipo Browniano. Estes resultados são discutidos considerando que a migração das partículas é causada por interações inelásticas, onde os elétrons do feixe do microscópio rompem as ligações atômicas e diminuem a barreira de energia de migração dos átomos da matriz localizados na interface com a partícula. Nos experimentos envolvendo irradiação com íons pesados em amostras contendo partículas de Pb relativamente grandes (diâmetros de ≈ 15 nm), demonstra-se que os efeitos da irradiação são: alongar as partículas na direção do feixe de íons e promover sua decomposição parcial formando partículas "satélites". Estes fenômenos são discutidos em termos de modelos da literatura. Entretanto, o resultado mais surpreendente é o de que as partículas satélites são muito estáveis, não se decompondo mesmo após recozimentos a 1100 °C. Este fenômeno é discutido utilizando-se os mesmos argumentos do modelo que explica a estabilidade dos aglomerados. Em termos gerais, esta tese apresenta e discute novos fenômenos relacionados com a estabilidade de sistemas de nanopartículas frente a tratamentos térmicos e à irradiação por elétrons e íons. Considerando o sistema de partículas de Pb em substrato de sílica como um caso modelo, os presentes resultados introduzem novos conceitos sobre o comportamento individual e coletivo de partículas, questionando suas potenciais aplicações em ambientes agressivos frente a irradiações com elétrons e íons pesados, tipicamente encontrados no espaço próximo da órbita da Terra bem como em reatores nucleares. / Because of their high interface area to volume ratio, nanoparticle systems are intrinsically in a non-thermodynamic-equilibrium state and when submitted to harsh environments these nanomectric structures may loose their functional advantages. In this work we investigate the microstructural changes of Pb nanoparticles embedded in silica films. The modifications were induced by different conditions of thermal annealing and irradiations with electrons and heavy ions. Nanoparticles were formed via Ion Beam Synthesis, combining Pb ion implantation and different steps of thermal annealing and irradiations. Microstructural evolutions were characterized by Rutherford backscattering spectrometry and transmission electron microscopy in conventional mode as well as in-situ, monitoring in real time the changes caused by thermal annealing and irradiation experiments performed inside the microscope. Thermally stable nanoparticles were obtained through an original experimental route develop by our research group. It consists of a long time low temperature annealing which results in the formation of small structures with ≈ 1 nm in diameter that dissociate at temperatures ≈ 600 °C higher than the melting temperature of the metallic bulk Pb. In contrast to what is presented in the literature, our results are discussed considering that the thermal stability of the nanoparticles is due to the formation of Pb clusters with low interface free energy with the SiO2 matrix. Moreover, it was also demonstrated that the thermally stable nanoparticle system evolves in a peculiar way when submitted simultaneously to high temperature annealing and electron irradiations. In particular, the high temperature thermal treatment performed inside the microscope during the observations affects atomic diffusion and also nanoparticle nucleation and growth processes. In-situ experiments allow a clear observation and analysis of the behavior of individual nanoparticles ranging from 3 to 15 nm in diameter when submitted to annealings between 30 °C and 1100 °C. Videos recorded during the in-situ thermal treatment reveal that nanoparticles larger than 3 nm in diameter migrate trough the silica film, presenting Brownian-like motion. The results are discussed considering that migration is caused by inelastic interaction, where the electrons from the microscope break atomic bonds reducing the migration energy barrier of the matrix atoms located at the particle surface. Concerning heavy ion irradiation of large Pb particles (≈ 15 nm in diameter), the main results demonstrate that the bombardment introduce a shape change in these particles, elongating them in the direction parallel to the ion beam incidence. In addition, the irradiation promotes the partial dissolution of the nanoparticles and the formation of nanomectric structures surrounding the central particle. These nanoparticles, named satellites, are thermally stable, maintaining its microstructural characteristics even when annealed at temperatures as high as 1100 °C. To sum up, this thesis presents and discusses new phenomena related to thermal stability of nanoparticles under high temperature and irradiation with electrons and heavy ions. The system formed by Pb nanoparticles embedded in sil ica film can be considered as a model case for the study of the individual and collective particle behavior submitted to harsh environments, similar to those presented in the space and in nuclear reactors.
9

Estabilidade de nanopartículas em sílica : efeitos térmicos e de irradiação com elétrons e íons energéticos

Luce, Flavia Piegas January 2012 (has links)
Por apresentarem uma alta razão de área de interface por volume, sistemas de nanopartículas são termodinamicamente instáveis e podem perder suas vantagens funcionais em função de modificações estruturais induzidas por variações de parâmetros intensivos do ambiente de aplicação. O presente trabalho trata do estudo da estabilidade estrutural de sistemas densos de nanopartículas de Pb embebidos em substratos de sílica frente às variações de temperatura e a exposição à irradiação com elétrons e íons energéticos. Substratos de SiO2/Si foram implantados com íons de Pb e submetidos à diferentes condições de tratamento térmico e irradiações com elétrons e íons pesados. Evoluções microestruturais foram acompanhadas através de medidas de espectrometria de retroespalhamento Rutherford e por análises de microscopia eletrônica de transmissão em modo convencional e in-situ, acompanhando em tempo real as mudanças introduzidas pelo aquecimento e bombardeamentos iônico e eletrônico. A síntese das amostras segue uma rota alternativa, desenvolvida no próprio grupo de pesquisa, que resulta na formação de aglomerados atômicos com diâmetros de 1 nm ou inferiores, os quais são altamente estáveis e só se dissociam em temperaturas de ≈ 600 °C acima da temperatura de fusão do Pb massivo. Em contraste com a literatura, apresenta-se um modelo que explica a alta estabilidade térmica desses aglomerados como consequência da formação de interfaces com menor energia livre, e não somente em função do tipo de arranjo estrutural ou do fortalecimento das ligações químicas entre os átomos do aglomerado. Além disso, os resultados mostram que o sistema de aglomerados evolui de maneira peculiar quando submetido simultaneamente a recozimentos e a irradiações em alta temperatura. Em particular, demonstra-se que a irradiação com elétrons do próprio feixe do microscópio, que ocorre durante observações com recozimento in-situ, afeta tanto os processos de difusão atômica como os de nucleação e crescimento de nanopartículas. Os experimentos in-situ possibilitam observar o comportamento de partículas individuais com tamanhos da ordem de 3 a 15 nm de diâmetro a temperaturas entre 30 e 1100 °C. As medidas registradas em vídeo mostram que, para temperaturas acima de 400 °C, partículas com diâmetro maior que 3 nm estão na fase líquida e migram pela matriz sólida apresentando um movimento do tipo Browniano. Estes resultados são discutidos considerando que a migração das partículas é causada por interações inelásticas, onde os elétrons do feixe do microscópio rompem as ligações atômicas e diminuem a barreira de energia de migração dos átomos da matriz localizados na interface com a partícula. Nos experimentos envolvendo irradiação com íons pesados em amostras contendo partículas de Pb relativamente grandes (diâmetros de ≈ 15 nm), demonstra-se que os efeitos da irradiação são: alongar as partículas na direção do feixe de íons e promover sua decomposição parcial formando partículas "satélites". Estes fenômenos são discutidos em termos de modelos da literatura. Entretanto, o resultado mais surpreendente é o de que as partículas satélites são muito estáveis, não se decompondo mesmo após recozimentos a 1100 °C. Este fenômeno é discutido utilizando-se os mesmos argumentos do modelo que explica a estabilidade dos aglomerados. Em termos gerais, esta tese apresenta e discute novos fenômenos relacionados com a estabilidade de sistemas de nanopartículas frente a tratamentos térmicos e à irradiação por elétrons e íons. Considerando o sistema de partículas de Pb em substrato de sílica como um caso modelo, os presentes resultados introduzem novos conceitos sobre o comportamento individual e coletivo de partículas, questionando suas potenciais aplicações em ambientes agressivos frente a irradiações com elétrons e íons pesados, tipicamente encontrados no espaço próximo da órbita da Terra bem como em reatores nucleares. / Because of their high interface area to volume ratio, nanoparticle systems are intrinsically in a non-thermodynamic-equilibrium state and when submitted to harsh environments these nanomectric structures may loose their functional advantages. In this work we investigate the microstructural changes of Pb nanoparticles embedded in silica films. The modifications were induced by different conditions of thermal annealing and irradiations with electrons and heavy ions. Nanoparticles were formed via Ion Beam Synthesis, combining Pb ion implantation and different steps of thermal annealing and irradiations. Microstructural evolutions were characterized by Rutherford backscattering spectrometry and transmission electron microscopy in conventional mode as well as in-situ, monitoring in real time the changes caused by thermal annealing and irradiation experiments performed inside the microscope. Thermally stable nanoparticles were obtained through an original experimental route develop by our research group. It consists of a long time low temperature annealing which results in the formation of small structures with ≈ 1 nm in diameter that dissociate at temperatures ≈ 600 °C higher than the melting temperature of the metallic bulk Pb. In contrast to what is presented in the literature, our results are discussed considering that the thermal stability of the nanoparticles is due to the formation of Pb clusters with low interface free energy with the SiO2 matrix. Moreover, it was also demonstrated that the thermally stable nanoparticle system evolves in a peculiar way when submitted simultaneously to high temperature annealing and electron irradiations. In particular, the high temperature thermal treatment performed inside the microscope during the observations affects atomic diffusion and also nanoparticle nucleation and growth processes. In-situ experiments allow a clear observation and analysis of the behavior of individual nanoparticles ranging from 3 to 15 nm in diameter when submitted to annealings between 30 °C and 1100 °C. Videos recorded during the in-situ thermal treatment reveal that nanoparticles larger than 3 nm in diameter migrate trough the silica film, presenting Brownian-like motion. The results are discussed considering that migration is caused by inelastic interaction, where the electrons from the microscope break atomic bonds reducing the migration energy barrier of the matrix atoms located at the particle surface. Concerning heavy ion irradiation of large Pb particles (≈ 15 nm in diameter), the main results demonstrate that the bombardment introduce a shape change in these particles, elongating them in the direction parallel to the ion beam incidence. In addition, the irradiation promotes the partial dissolution of the nanoparticles and the formation of nanomectric structures surrounding the central particle. These nanoparticles, named satellites, are thermally stable, maintaining its microstructural characteristics even when annealed at temperatures as high as 1100 °C. To sum up, this thesis presents and discusses new phenomena related to thermal stability of nanoparticles under high temperature and irradiation with electrons and heavy ions. The system formed by Pb nanoparticles embedded in sil ica film can be considered as a model case for the study of the individual and collective particle behavior submitted to harsh environments, similar to those presented in the space and in nuclear reactors.
10

Estudo das ressonâncias de plasmon em filmes silicatos com nanopartículas de Ag interagentes

Menegotto, Thiago January 2011 (has links)
Neste trabalho, estudou-se o comportamento da ressonância de plasmon de superfície de camadas de nanopartículas metálicas de prata envoltas por dióxido de silício ou sobre superfícies desse material. Os filmes produzidos tiveram suas propriedades estruturais caracterizadas por microscopia eletrônica de transmissão, enquanto as propriedades ópticas foram investigadas por espectrofotometria. As nanopartículas apresentaram diâmetro médio de 8 nm e a ressonância de plasmon desses filmes estava deslocada em relação à previsão teórica do modelo de Maxwell Garnett. Esse deslocamento ocorreu em direções contrárias, dependendo se a direção do campo elétrico está paralela ou perpendicular ao plano de partículas, e foi atribuído à transferência estática de cargas e à interação dipolar entre as nanopartículas no sistema. A transferência estática de cargas foi considerada com base em dados estabelecidos na literatura para prata envolta por SiO2, ao passo que duas abordagens foram utilizadas para simular a posição da ressonância de plasmon de tais filmes. Ambas abordagens estão inicialmente baseadas no modelo de Maxwell Garnett, mas considerando a função dielétrica do metal modificada pela interação dipolar entre as nanopartículas. O primeiro modelo proposto adaptou o termo ImA – originalmente sugerido para descrever o deslocamento da ressonância de plasmon devido aos estados adsorvidos na superfície – para ajustar e simular as propriedades dos filmes produzidos. Esse modelo apresentou bons resultados para o campo elétrico paralelo ao plano das partículas, sobretudo para os filmes de nanopartículas de prata enterradas em SiO2. Entretanto, a posição do pico de ressonância para o campo elétrico ortogonal ao plano das partículas prevista pelo método com ImA, a incidências oblíquas da luz, não está em concordância com a posição da ressonância medida. A segunda abordagem conectou o modelo de Maxwell Garnett à teoria dipolar de interação entre as partículas em sistemas bidimensionais, desenvolvida por Persson e Liebsch. Essa abordagem permitiu descrever corretamente a posição da ressonância de plasmon, tanto para acoplamento perpendicular, quanto paralelo do campo elétrico no filme com nanopartículas e possibilitou relacionar as características estruturais da amostra aos parâmetros de simulação. Os modelos também foram aplicados em uma amostra que apresentou significativa deterioração após sua produção. A comparação entre as simulações e os resultados experimentais foi bastante satisfatória, dentro das aproximações impostas pelo modelo utilizado, como distribuição uniforme de partículas idênticas. Isso indica que essas abordagens representam uma ferramenta muito útil para determinar o comportamento de dispositivos baseados em filmes finos com nanopartículas metálicas. / In this work, the behavior of surface plasmon resonance from layers of silver nanoparticles embedded in silicon dioxide or on surfaces of silicon dioxide was studied. Structural properties of the produced films were characterized by transmission electron microscopy, while the optical properties were studied with a spectrophotometer. Results showed average nanoparticle diameter of 8 nm and that the plasmon resonance was shifted with respect to the predicted theoretical value. This plasmon resonance shifted in opposite direction, depending if the direction of the wave electric field is parallel or perpendicular to the film. This shift was attributed to the static charge transfer and to the dipolar interaction between the nanoparticles in the sample. The static charge transfer was considered by taking into account data from literature for Ag in SiO2, while two approaches were used to simulate plasmon resonance position. Both approaches were initially based in the Maxwell Garnett Model, but considering a modified dielectric function for the metal due to the dipolar interaction between the nanoparticles. The first model suggested to use the term ImA, which was originally developed to describe shifts in plasmon resonance due to adsorbate surface states, in order to fit or simulate the properties of the films. This model showed good results especially for films with silver nanoparticles buried into silicon dioxide, when the electric field was parallel to its plane. But, the position of the peak when the field is perpendicular to the film plane, at oblique incident angles, was not in accordance with the measured peak position. A second approach was developed aiming to connect Maxwell Garnett model to the theory of dipolar interaction between particles in bidimensional samples, developed by Persson and Liebsch. This approach allowed describing correctly the position of surface plasmon resonance for both, parallel or perpendicular coupling of electrical field in the film. It also allowed relating structural properties of the sample to the parameters of simulation. The presented model was also applied for a sample which presented significative deterioration. Comparison between simulated and experimental results is satisfactory within the limitation of the applied model (uniform distribution of identical particles). This indicates that this approach can represent a tool for predicting the behavior of devices based in thin films of metallic nanoparticles.

Page generated in 0.1033 seconds