Spelling suggestions: "subject:"compound usemarkov random field"" "subject:"compound usemarkov random yield""
1 |
Parameter Estimation for Compound Gauss-Markov Random Field and its application to Image RestorationHsu, I-Chien 20 June 2001 (has links)
The restoration of degraded images is one important application of image processing. The classical approach of image restoration, such as low-pass filter method, is usually stressed on the numerical error but with a disadvantage in visual quality of blurred texture. Therefore, a new method of image restoration, based upon image model by Compound Gauss-Markov(CGM) Random Fields, using MAP(maximum a posteriori probability) approach focused on image texture effect has been proved to be helpful. However, the contour of the restored image and numerical error for the method is poor because the conventional CGM model uses fixed global parameters for the whole image. To improve these disadvantages, we adopt the adjustable parameters method to estimate model parameters and restore the image. But the parameter estimation for the CGM model is difficult since the CGM model has 80 interdependent parameters. Therefore, we first adopt the parameter reduction approach to reduce the complexity of parameter estimation. Finally, the initial value set of the parameters is important. The different initial value might produce different results. The experiment results show that the proposed method using adjustable parameters has good numerical error and visual quality than the conventional methods using fixed parameters.
|
2 |
Investigation of Compound Gauss-Markov Image FieldLin, Yan-Li 05 August 2002 (has links)
This Compound Gauss-Markov image model has been proven helpful in image restoration. In this model, a pixel in the image random field is determined by the surrounding pixels according to a predetermined line field. In this thesis, we restored the noisy image based upon the traditional Compound Gauss-Markov image field without the constraint of the model parameters introduced in the original work. The image is restored in two steps iteratively: restoring the line field by the assumed image field and restoring the image field by the just computed line field.
Two methods are proposed to replace the traditional method in solving for the line field. They are probability method and vector method. In probability method, we break away from the limitation of the energy function Vcl(L) and the mystical system parameters Ckll(m,n) and£mw2. In vector method, the line field appears more reasonable than the original method. The image restored by our methods has a similar visual quality but a better numerical value than the original method.
|
Page generated in 0.049 seconds