Spelling suggestions: "subject:"compress?o dde imagens"" "subject:"compress?o dee imagens""
1 |
Compress?o de Imagens Usando a Fun??o de Peano e a Transformada Wavelet 1DSantos, Daniel Teixeira dos 06 April 2012 (has links)
Made available in DSpace on 2014-12-17T14:08:51Z (GMT). No. of bitstreams: 1
DanielTS_DISSERT.pdf: 2906320 bytes, checksum: 0844f1ce3a3b057671d92efe62faa050 (MD5)
Previous issue date: 2012-04-06 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / In this work, spoke about the importance of image compression for the industry, it is known that processing and image storage is always a challenge in petrobr?s to optimize the storage time and
store a maximum number of images and data. We present an interactive system for processing and storing images in the wavelet domain and an interface for digital image processing. The
proposal is based on the Peano function and wavelet transform in 1D. The storage system aims to optimize the computational space, both for storage and for transmission of images. Being
necessary to the application of the Peano function to linearize the images and the 1D wavelet transform to decompose it. These applications allow you to extract relevant information for the storage of an image with a lower computational cost and with a very small margin of error when comparing the images, original and processed, ie, there is little loss of quality when applying the processing system presented . The results obtained from the information extracted from the images are displayed in a graphical interface. It is through the graphical user interface that the user uses the files to view and analyze the results of the programs directly on the computer screen without the worry of dealing with the source code. The graphical user interface, programs for image processing via Peano Function and Wavelet Transform 1D, were developed in Java language, allowing a direct exchange of information between them and the user / Neste trabalho, apresenta-se a import?ncia da compress?o de imagens para a ind?stria de petr?leo, sabe-se que o processamento e armazenamento de imagens ? sempre um desafio nas grandes empresas de petr?leo, para otimizar o tempo de armazenamento e armazenar um n?mero m?ximo de imagens e dados. ? exposto algumas ferramentas para o processamento e
armazenamento de imagens no dom?nio wavelet. A proposta apresentada baseia-se na Fun??o de Peano e na transformada wavelet 1D. O sistema de armazenamento tem como objetivo a
otimiza??o do espa?o computacional, tanto para o armazenamento como para transmiss?o de imagens. Sendo necess?rio para isso, a aplica??o da Fun??o de Peano para linearizar as imagens com m?xima concentra??o de pontos vizinhos e a transformada wavelet 1D para decomp?-la.
Estas aplica??es permitem extrair informa??es relevantes para o armazenamento de uma imagem com um menor custo computacional e com uma margem de erro muito pequena quando se compara as imagens, original e processada, ou seja, h? pouca perda de qualidade ao aplicar o sistema de processamento apresentado. Os resultados obtidos a partir das informa??es extra?das das imagens s?o apresentados numa interface gr?fica. ? atrav?s da interface gr?fica que o usu?rio visualiza as imagens e analisa os resultados do programa diretamente na tela do computador sem a preocupa??o de lidar com os c?digos fontes. A interface gr?fica, os programas de processamento
de imagens via Fun??o de Peano e a TransformadaWavelet 1D foram desenvolvidos em linguagem java, possibilitando uma troca direta de informa??es entre eles e o usu?rio
|
2 |
Compress?o Seletiva de Imagens Coloridas com Detec??o Autom?tica de Regi?es de InteresseGomes, Diego de Miranda 05 January 2006 (has links)
Made available in DSpace on 2014-12-17T14:56:22Z (GMT). No. of bitstreams: 1
DiegoMG.pdf: 1982662 bytes, checksum: e489eb42e914d358aaeb197489ceb5e4 (MD5)
Previous issue date: 2006-01-05 / There has been an increasing tendency on the use of selective image compression, since several applications make use of digital images and the loss of information in certain regions is not allowed in some cases. However, there are applications in which these images are captured and stored automatically making it impossible to the user to select the regions of interest to be compressed in a lossless manner. A possible solution for this matter would be the automatic selection of these regions, a very difficult problem to solve in general cases. Nevertheless, it is possible to use intelligent techniques to detect these regions in specific cases. This work proposes a selective color image compression method in which regions of interest, previously chosen, are compressed in a lossless manner. This method uses the wavelet transform to decorrelate the pixels of the image, competitive neural network to make a vectorial quantization, mathematical morphology, and Huffman adaptive coding. There are two options for automatic detection in addition to the manual one: a method of texture segmentation, in which the highest frequency texture is selected to be the region of interest, and a new face detection method where the region of the face will be lossless compressed. The results show that both can be successfully used with the compression method, giving the map of the region of interest as an input / A compress?o seletiva de imagens tende a ser cada vez mais utilizada, visto que diversas aplica??es fazem uso de imagens digitais que em alguns casos n?o permitem perdas de informa??es em certas regi?es. Por?m, existem aplica??es nas quais essas imagens s?o capturadas e armazenadas automaticamente, impossibilitando a um usu?rio indicar as regi?es da imagem que devem ser comprimidas sem perdas. Uma solu??o para esse problema seria a detec??o autom?tica das regi?es de interesse, um problema muito dif?cil de ser resolvido em casos gerais. Em certos casos, no entanto, pode-se utilizar t?cnicas inteligentes para detectar essas regi?es. Esta disserta??o apresenta um compressor seletivo de imagens coloridas onde as regi?es de interesse, previamente fornecidas, s?o comprimidas totalmente sem perdas. Este m?todo faz uso da transformada wavelet para descorrelacionar os pixels da imagem, de uma rede neural competitiva para realizar uma quantiza??o vetorial, da morfologia matem?tica e do c?digo adaptativo de Huffman. Al?m da op??o da sele??o manual das regi?es de interesse, existem duas op??es de detec??o autom?tica: um m?todo de segmenta??o de texturas, onde a textura com maior freq??ncia ? selecionada para ser a regi?o de interesse, e um novo m?todo de detec??o de faces onde a regi?o da face ? comprimida sem perdas. Os resultados mostram que ambos os m?todos podem ser utilizados com o algoritmo de compress?o, fornecendo a este o mapa de regi?o de interesse
|
Page generated in 0.0994 seconds