Spelling suggestions: "subject:"compression ram"" "subject:"compression ramo""
1 |
Étude numérique de l’interaction choc/couche limite en géométrie de révolution / Numerical Study of Shock/Boundary Layer Interaction on a Cylindrical ConfigurationNakano, Tamon 12 September 2018 (has links)
Les phénomènes d’interactions choc/couche limite sont dimensionnants pour de nombreuses applications des domaines de l’aéronautique et du spatial. Ils peuvent être associés à la formation de décollements instationnaires à basse fréquence qui n’ont été étudiés jusqu’à présent qu’en géométrie plane. La présente étude vise à caractériser ce type d’interaction en configuration cylindrique. Un outil de simulation numérique directe,basé sur l’extension de schémas hybrides aux différences finies de haute précision (centrés optimisés6/WENO 5) en géométrie curviligne, a été développé et validé à travers divers cas test standards. Une première partie de l’étude se focalise sur l’influence d’un effet de courbure transverse sur le développement des propriétés d’une couche limite supersonique à Mach 3. Il est montré que l’augmentation de la courbure relative de la couche limite tend à réduire l’énergie de fluctuation à basse fréquence près de la paroi, tout en renforçant les perturbations à hautes fréquences dans la zone externe de la couche limite. En comparaison avec le cas plan, la courbure transverse induit une ré-organisation notable des structures de la couche limite et un comportement différent des invariants d’anisotropie des contraintes, mais ne conduit qu’à une légère modification des distributions de contraintes et de l’équilibre global d’énergie cinétique turbulente. Une seconde partie de l’étude se concentre sur la zone d’interaction avec une rampe de compression et le mouvement instationnaire du choc en géométrie de révolution complète. La déformation azimutale du choc est caractérisée dans son mouvement. Elle apparaît essentiellement associée à la fluctuation de la ligne de décollement et l’organisation des structures tourbillonnaires amont. Il est montré que l’énergie des modes azimutaux de pression pariétale fluctuante est plus amplifiée pour les modes d’ordre plus élevé. La contribution à l’effort latéral associé au mode 1 apparaît plus particulièrement marquée à basses fréquences dans la zone amont au point de décollement et à moyennes fréquences en aval de la zone de recollement sur la rampe où les niveaux les plus élevés de fluctuations sont observés. Il est montré que les fluctuations à basses fréquences sont en revanche portées par des modes azimutaux d’ordre de plus en plus élevé à travers la zone d’interaction. / Shock wave/boundary layer interactions (SWBLI) are present in various aerospace engineering applications.They can be associated with separated regions yielding low-frequency unsteadiness, which have mainly been studied in planar geometries. The present study aims at characterizing this type of interaction in a cylindrical configuration. A direct numerical simulation solver has been developed and validated with various test cases. It is based on a high-order finite difference based hybrid schemes (6th order centered scheme/5thorder WENO), extended to curvilinear geometries. Transverse curvature effects on properties of spatially developing supersonic boundary layer at Mach 3 are first examined. It is shown that the increase of the relative curvature of the boundary layer tends to reduce the fluctuation energy at lower frequencies near the wall, while reinforcing the perturbations at higher frequencies in the upper zone of the boundary layer.In comparison with the planar case, the transverse curvature leads to a significant re-organization of the boundary layer structures and a subsequent modified behavior of the invariants of anisotropy turbulent stress tensor. It however only leads to slightly modified distributions of Reynolds stress and a rather similar overall balance of turbulent kinetic energy through the boundary layer. The second part of this study is dedicated to the unsteady motions of the shock/separation zone in a cylinder/compression flare configuration for which the full cylindrical geometry is taken into account. The shock distortions in the azimutal direction appears to be mainly associated to the organization of the upstream vortex structures and the subsequent azimutal fluctuations of the separation line. It is shown that the energy of the fluctuating wall pressure is more amplified for higher order azimutal modes. The contributions to lateral forces, associated to the first mode, are dominated by low-frequencies only upstream of the separation line in the intermittent region. They become more dominant in the middle frequency range downstream of the reattachment zone on the ramp. It is also shown that the low-frequency activity at the wall is progressively due to higher order azimuthal modes through the interaction zone.
|
2 |
Shock Wave-boundary Layer Interaction in Supersonic Flow over Compression Ramp and Forward-Facing StepJayaprakash Narayan, M January 2014 (has links) (PDF)
Shock wave-boundary layer interactions (SWBLIs) have been studied ex-tensively due to their practical importance in the design of high speed ve-hicles. These interactions, especially the ones leading to shock induced separation are typically unsteady in nature and can lead to large fluctuating pressure and thermal loads on the structure. The resulting shock oscil-lations are generally composed of high-frequency small-scale oscillations and low-frequency large-scale oscillations, the source of the later being a subject of intense recent debate. Motivated by these debates, we study in the present work, the SWBLI at a compression ramp and on a forward-facing step (FFS) at a Mach number of 2.5. In the case of compression ramps, a few ramp angles are studied ranging from small (10 degree) ramp angle to relatively large values of up to 28 degrees. The FFS configuration, which consists of a 90 degree step of height h, may be thought of as an extreme case of the compression ramp geometry, with the main geometri-cal parameter here being (h/δ), where δis the thickness of the oncoming boundary layer. This configuration is less studied and has some inherent advantages for experimentally studying SWBLI as the size of the separa-tion bubble is large. In the present experimental study, we use high-speed schlieren, unsteady wall pressure measurements, surface oil flow visualiza-tion, and detailed particle image velocimetry (PIV) measurements in two orthogonal planes to help understand the features of SWBLI in the com-pression ramp geometry and the forward-facing step case.
The SWBLI at a compression ramp has been more widely studied, and our measurements show the general features that have been seen in earlier studies. The upstream boundary layer is found to separate close to the ramp corner forming a separation bubble. The streamwise length of the separa-tion bubble is found to increase with the ramp angle, with a consequent shift of the shock foot further upstream. At very small ramp angles up to 10 degrees, there is no evidence of separation, while at large ramp angles of 28 degrees, the separation bubble extends upstream to about 3.5δ(δ=boundary layer thickness). In all cases, the separation bubble is however very small in the wall normal direction, typically known to be about 0.1δ, and hence is difficult to directly measure in experiments using PIV. Shock foot measurements using PIV show that the shock has a spanwise ripple, which seems directly related to the high-and low-speed streaks in the in-coming boundary layer as recently shown by Ganapathisubramani et al. (2007).
The forward-facing step configuration may be thought of as an extreme case of the compression ramp geometry, with a ramp angle of 90 degrees. This configuration has not been extensively studied, and is experimentally convenient due to the large separation bubbles formed ahead of the step. In the present work, extensive measurements of the mean and unsteady flow around this configuration have been done, especially for the case of h/δ=2, where his the step height. Pressure measurements in this case, show clear low-frequency motions of the shock at non-dimensional frequencies of about fh/U∞≈ 0.02. In this case, PIV measurements show the pres-ence of a large mean separation bubble extending to about 4hupstream and about 1hvertically. Instantaneous PIV measurements have been done in both cross-stream (streamwise and wall-normal plane) and in the span-wise (streamwise-spanwise) plane. Instantaneous cross-stream PIV mea-surements show significant variations of the shock location and angle, be-sides large variations in the recirculation region (or separation bubble), this being determined as the area having streamwise velocities less than zero. From a large set of individual PIV instantaneous fields, we can estimate the correlation of the measured shock location to both downstream effects like the area of the recirculation region, and upstream effects like the presence of high-/low-speed streaks in the oncoming boundary layer. We find that the shock location measured from data outside the boundary layer is more highly correlated to downstream effects as measured through the recircu-lation area compared to upstream effects in the boundary layer. However, we find that the shock foot within the boundary layer has ripples in the
spanwise direction which are well correlated to the presence of high-/low-speed streaks in the incoming boundary layer. These spanwise ripples are however found to be small (less than one h) compared to the highly three-dimensional shape of the recirculation region with spanwise variation of the order of 3 step heights.
In summary, the study shows that the separated region ahead of the step is highly three-dimensional. The shock foot within the boundary layer is found to have ripples that are well correlated to fluctuations in the in-coming boundary layer. However, we find that the large-scale nearly two-dimensional shock motions outside the boundary layer are not well cor-related to the fluctuations in the boundary layer, but are instead well cor-related with the spanwise-averaged separation bubble extent. Hence, the present results suggest that for the forward-facing step configuration, it is the downstream effect caused by the separation bubble that leads to the observed low-frequency shock motions.
|
Page generated in 0.1079 seconds