• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of soft tissue and surrogate materials across varied loading methods

Dennis, Cole 26 July 2025 (has links)
Exploring the mechanical properties of soft tissues under compressive loading is crucial for understanding their role in automobile incidents. Soft tissues, which serve as cushions or padding between bone and vehicle interiors, significantly influence contact duration and forces, thereby altering incident kinematics and injury risk assessment. In this investigation, muscle and soft connective tissues from post-mortem human subjects (PMHS) forearms were excised and subjected to compression and indentation testing methods at various rates and strains. Anthropomorphic Test Devices (ATDs) upper extremity foam and vinyl foam composite material surrogate tissues underwent similar testing for comparison. High impact rates simulating those in high-speed car collisions were achieved using a custom-built drop tower. The results revealed substantial differences in stiffness between soft tissues and ATD materials across most loading rates and strains, although some exceptions were noted at higher rates and strains. Indentation and modified Zener models were used to quantify material parameters. The indentation model could characterize human muscle, soft connective tissues and ATD vinyl foam composites, but fell short with ATD foam materials. The Zener model effectively derived material parameters for the tested human tissues but encountered difficulties characterizing both ATD materials. This highlights the need for further refinement to develop a constitutive model for both materials. These findings provide a solid basis for advancing ATD surrogate materials and have broader implications for soft tissue research. Moreover, this work represents a crucial step towards enhancing safety standards in the automotive industry. / Thesis / Master of Science in Biomedical Engineering / Soft tissues are crucial in mitigating impact effects in various loading scenarios, yet their specific roles are complex and poorly understood. Understanding soft tissues' role in these loading scenarios is critical for understanding injury risk tolerances. This study aimed to characterize muscle and soft connective tissue behaviour during compressive loading scenarios using various techniques and modelling approaches. This was done through compressive loading tests on soft tissues and comparing these same tests with data from current crash test dummy surrogate tissues. The results showed that the soft tissues were less stiff than the crash test dummy materials in most scenarios. It was also apparent that different stiffnesses were seen depending on soft connective tissue and muscle tissue composition. This study provides insights into the rate dependence of materials, alongside the relevance of how different compositions affect their loading properties. This characterization also revealed significant discrepancies between the responses of current surrogates and human muscle and soft connective tissues. This work offers valuable observations and data for refining ATD surrogates and enhancing their fidelity in simulating real-world impact scenarios. Such advancements are pivotal for improving safety standards.
2

Oscillatory Compressive Loading Effects On Mesenchymal Progenitor Cells Undergoing Chondrogenic Differentiation In Hydrogel Suspension

Case, Natasha D. 15 April 2005 (has links)
Articular cartilage functions to maintain joint mobility. The loss of healthy, functional articular cartilage due to osteoarthritis or injury can severely compromise quality of life. To address this issue, cartilage tissue engineering approaches are currently in development. Bone marrow-derived mesenchymal progenitor cells (MPCs) hold much promise as an alternative cell source for cartilage tissue engineering. While previous studies have established that MPCs from humans and multiple other species undergo in vitro chondrogenic differentiation, additional research is needed to define conditions that will enhance MPC differentiation, increase matrix production by differentiating cultures, and support development of functional tissue-engineered cartilage constructs. Mechanical loading may be an important factor regulating chondrogenic differentiation of MPCs and cartilage matrix formation by chondrogenic MPCs. This thesis work evaluated the influence of oscillatory unconfined compressive mechanical loading on in vitro MPC chondrogenic activity and biosynthesis within hydrogel suspension. Loading was conducted using MPCs cultured in media supplements supporting chondrogenic differentiation. Possible interactions between the number of days in chondrogenic media preceding loading initiation and the ability of the MPC culture to respond to mechanical stimulation were explored in two different loading studies. The first loading study investigated the effects of 3 hour periods of daily oscillatory mechanical stimulation on subsequent chondrogenic activity, where chondrogenic activity represented an assessment of cartilage matrix production by differentiating MPCs. This study found that oscillatory compression of MPCs initiated during the first seven days of culture did not enhance chondrogenic activity above the level supported by media supplements alone. The second loading study evaluated changes in biosynthesis during a single 20 hour period of oscillatory mechanical stimulation to assess mechanoresponsiveness of the MPC cultures. This study found that MPCs modulated proteoglycan and protein synthesis in a culture time-dependent and frequency-dependent manner upon application of oscillatory compression. Together the two loading studies provide an assessment of dynamic compressive mechanical loading influences on MPC cultures undergoing chondrogenic differentiation. The information gained through in vitro studies of differentiating MPC cultures will increase basic knowledge about progenitor cells and may also prove valuable in guiding the future development of cartilage tissue engineering approaches.
3

Defining the mechanical characteristics of porcine brain tissue subject to cyclic, compressive loading

Sebastian, Kali 01 May 2020 (has links)
In recent years, repetitive traumatic brain injuries have been linked to the progressive neurodegenerative disorder termed chronic traumatic encephalopathy. However, the mechanical characteristics of brain tissue exposed to repetitive loading still lack understanding. This research evaluated the response of porcine brain tissue undergoing cyclic, compressive loading in reference to three impact parameters: cycle number (N25, N50, N100, N150, and N200), strain level (15, 30, and 40%), and strain rate (0.00625, 0.025, 0.10, and 1.0/s). Following mechanical testing, tissue samples were processed for hematoxylin and eosin (H&E) staining. Stress values, hysteresis energy, and decreases in hysteresis energy for all parameters were compared. The data suggest that microstructural brain tissue damage is highly dependent on strain level and cycle number, whereas strain rate did not appear to cause permanent damage in the quasi-static range applied. The onset of permanent microstructural tissue damage may relate to movement of fluid molecules within the tissue.
4

Predicting Compression Failure of Fiber-reinforced Polymer Laminates during Fire

Summers, Patrick T. 23 May 2010 (has links)
A thermo-structural model was developed to predict the failure of compressively loaded fiber-reinforced polymer (FRP) laminates during fire. The thermal model was developed as a one-dimensional heat and mass transfer model to predict the thermal response of a decomposing material. The thermal properties were defined as functions of temperature and material decomposition state. The thermal response was used to calculate mechanical properties. The structural model was developed with thermally induced bending caused by one-sided heating. The structural model predicts out-of-plane deflections and compressive failure of laminates in fire conditions. Laminate failure was determined using a local failure criterion comparing the maximum combined compressive stress with the compressive strength. Intermediate-scale one-sided heating tests were performed on compressively loaded FRP laminates. The tests were designed to investigate the effect of varying the applied stress, applied heat, and laminate dimensions on the structural response. Three failure modes were observed in testing: kinking, localized kinking, and forced-response deflection, and were dependent on the applied stress level and independent of applied heating. The times-to-failure of the laminates followed an inverse relationship with the applied stress and heating levels. The test results were used to develop a relationship which relates a non-dimensionalized applied stress with a non-dimensionalized slenderness ratio. This relationship relates the applied stress, slenderness ratio, and temperature of the laminate at failure and can be used to determine failure in design of FRP laminate structures. The intermediate-scale tests were also used to validate the thermo-structural model with good agreement. / Master of Science
5

The effect of compressive loading and cement type on the fire spalling behaviour of concrete. / Effets du chargement en compression et du type de ciment sur le risque d'écaillage du béton au feu.

Miah, Md Jihad 19 October 2017 (has links)
La recherche présentée dans cette thèse vise à examiner le mécanisme d’écaillage des bétons exposés au feu et comprendre l’influence du chargement mécanique appliqué en compression durant le chauffage. Des cubes (200 x 200 x 200 mm3) et des dalles (800 x 800 x 100 mm3) de béton fabriqués avec des ciments CEM II et CEM III (B40-II et B40-III: fc28days ≈ 40 MPa) ont été exposés à un feu ISO 834-1 sous différents niveaux de chargement uniaxial (cubes) et biaxial (dalles). En outre, l'effet du chargement mécanique (pression de confinement et charge uniaxiale) sur la perméabilité résiduelle au gaz a été étudié. Afin de mieux analyser les résultats expérimentaux et comprendre les mécanismes à l’origine de l'écaillage, des calculs numériques ont été réalisés en utilisant un modèle thermo-mécanique du code aux éléments finis CAST3M. Les résultats expérimentaux ont clairement montré que les éprouvettes chargées (uniaxial et biaxial) présentent un risque d’écaillage plus important que les éprouvettes non chargées. L’écaillage augmente avec le niveau de contrainte appliquée. Une partie des essais mais pas tous, ont montré que le B40-II (3% de laitier) présente un écaillage plus important que celui du béton B40-III (43% de laitiers).À partir de cette étude sur deux bétons ordinaires, il peut être mis en évidence qu'un certain niveau de contrainte de compression externe (uniaxiale ou biaxiale) est nécessaire pour induire l'écaillage du béton ordinaire. Les pressions des pores se combine avec les contraintes thermiques dûes aux gradients thermiques. Les contraintes de compression appliquées empêchent la création de certaines fissures générées par l'incompatibilité des déformations thermiques de la pâte de ciment et des granulats et des gradients thermiques. Pour l'échantillon non chargé, la création de fissures augmente la perméabilité et empêche naturellement le développement des pressions de pores.Pendant un feu réel, les membres structurels en béton sont toujours chargés ou retenus. La présence d'un chargement compressif pendant le chauffage augmente considérablement le stress de compression (diminue le stress de traction) et la grandeur de la pression des pores, ce qui augmente le risque d'écaillage. Ensuite, le stress compressif appliqué est un facteur clé très important que la conception de la résistance au feu des structures en béton devrait prendre en compte lors de l'écaillage. Par conséquent, il est recommandé que les essais d'écaillage ne soient pas effectués uniquement sur des échantillons non chargés. / The research presented in this thesis seeks to examine and understand the mechanism of fire spalling role played by the external compressive loading during heating. Concrete cube (200 x 200 x 200 mm3) and slab (800 x 800 x 100 mm3) specimens made with CEM II and CEM III cements (B40-II and B40-III: fc28days ≈ 40 MPa) were exposed to ISO 834-1 fire curve under different levels of external uniaxial (for cube) and biaxial (for slab) compressive stress. Additionally, the effect of external compressive loading (confining pressure and uniaxial load) on the residual gas permeability of concretes have been investigated. In order to better analyse the experimental results and to provide more insight into the mechanism behind the fire spalling behaviour of concrete, numerical computations were carried out by using the existing thermo-mechanical model implemented in a finite element code CAST3M. The experimental results have clearly shown that the loaded specimens (uniaxial and biaxial) are more prone to spalling than unloaded specimens, with increasing amounts of spalling for higher values of applied compressive stress. Part of the tests, but not all have shown that B40-II (3% of slag) exhibited higher spalling than the B40-III (43% of slag).From this study on two ordinary concretes, it highlights that a certain level of external compressive stress (uniaxial or biaxial) was necessary to induce spalling. A possibility is that the applied compressive stress prevents the creation of cracks naturally due to thermal mismatch between cement paste and aggregates and thermal gradients. For unloaded specimen, the creation of cracks increases the permeability and naturally prevents the pore pressure to exceed a value that favours spalling.During a real fire, concrete structural members are always loaded or restrained. The presence of compressive loading during heating significantly increases the compressive stress (decreases the tensile stress) and the magnitude of pore pressure, which increase the risk of fire spalling. Then, the applied compressive stress is a very important key factor that the fire resistance design of concrete structures should take into account when considering spalling. Hence, it is recommended that the fire spalling test should not be carried out only on unloaded specimens, especially for the ordinary concrete.

Page generated in 0.0945 seconds