• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • 1
  • Tagged with
  • 15
  • 15
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Compressor leading edges

Goodhand, Martin January 2011 (has links)
Compressor blades often have a small 'spike' in the surface pressure distribution at the leading edge. This may result from blade erosion, manufacture defects or compromises made in the original design process. In this thesis it is shown that these spikes will increase the loss generated by a blade only when they become large enough to initiate boundary layer transition at the leading edge through a separation bubble; this process increases profile loss by about 30%. A criterion is presented, based on the spike diffusion, which can be used to determine whether leading edge transition will occur or not; this criterion is simple and quick to determine and has to potential to be used on a production line to reject those leading edges that would otherwise be detrimental. The spikes are also shown to have a significant effect on the flow close to the endwalls. If they cause leading edge transition in this region then they will cause a growth in the size of the three-dimensional separations that exist in the corner between the blades' suction surfaces and the endwalls. On the low speed stator tested this process increased hub loss by around 100%. Thus to prevent spikes becoming large a new method for producing a 'spikeless' leading edge has been developed; this leading edge can be attached easily to the thickness distribution of any blade and was found to be sharp, that is with very high curvature at the leading edge point. This spikeless leading edge was also found to be the best when the effects of real manufacture deviations, measured off of a production line, were considered. Asymmetry was found to be detrimental and bluntness was only beneficial when unrealistically large deviations were considered. The best leading edge geometry is therefore sharp and symmetric.
2

A numerical solution of implicit nonlinear equations of motion for rotor blades

Kim, Young K. 12 1900 (has links)
No description available.
3

Inverse methodology for multi-point aerodynamic rotor blade design

Tapia, Fidencio 05 1900 (has links)
No description available.
4

Examination of flow around second-generation controlled diffusion compressor blades in cascade at stall /

Fitzgerald, Kevin D. January 2004 (has links) (PDF)
Thesis (M.S. in Mechanical Engineering)--Naval Postgraduate School, June 2004. / Thesis advisor(s): Garth V. Hobson. Includes bibliographical references (p. 63). Also available online.
5

Structural design of composite rotor blades with consideration of manufacturability, durability, and manufacturing uncertainties

Li, Leihong. January 2008 (has links)
Thesis (Ph.D.)--Aerospace Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Hodges, Dewey H.; Committee Member: Bauchau, Olivier A.; Committee Member: Johnson, Ellis; Committee Member: Makeev, Andrew; Committee Member: Volovoi, Vitali V.
6

Experimental investigation of reversed flow in a compressor cascade

Carneal, James P. 14 April 2009 (has links)
An experimental investigation of reversed flow performance characteristics in a compressor cascade was conducted. The purpose was to gain a fundamental understanding of reversed flow in a compressor blade cascade, and to determine the effects of stagger angle and angle of attack on the reversed flow behavior in the cascade. Tests were conducted at two blade configurations, one to simulate reversed flow in a compressor rotor and one to simulate reversed flow in a compressor inlet guide vane. Three stagger angles were tested for each configuration with an absolute angle of attack range from 70 to 130 degrees. The investigation included total and static pressure measurements upstream and downstream of the cascade as well as blade surface measurements. Aerodynamic performance parameters were presented for a reversed flow cascade. Comparison of corrected total pressure loss curves suggested that blade rows of a compressor subjected to reversed flow may be treated as nearly equal loss producers. A comparison was made between total pressure loss coefficients from this investigation and experimental compressor performance. The total pressure loss coefficients compared favorably in magnitude and curve shape. / Master of Science
7

The effect of solidity on the pre- and post-stall flow in a linear compressor cascade

Ainslie, Walter E. 07 July 2010 (has links)
An experimental investigation of the performance characteristics of a solid wall linear compressor cascade was conducted. The purpose of the experiments was to determine the effects of the blade row configuration parameters stagger and solidity on the pre-and post-stall behavior of the flow in the cascade. Tests were conducted at a solidity of 1.5, and for two stagger angles, 36.4 degrees and 25 degrees. The investigation included the use of high speed motion pictures with smoke flow visualization in the cascade, measurements of the total pressure and velocity of the flow upstream and downstream of the cascade, and measurements of the blade surface pressures. The experiments were conducted for a range of angle of attack from 0 degrees to 45 degrees. To determine the effects of solidity on the pre- and post-stall behavior of the flow in the cascade, the results obtained for the present 1.5 solidity cascade were compared to previous results from the same cascade tested at a solidity of 1.0. The flow in the two cascades was observed to be similar in nature, but the influence of the reduced blade loading in the high solidity cascade was apparent. For the higher solidity cascade, flow losses at low angle of attack were found to be larger, but stalling behavior was delayed. / Master of Science
8

Vibration excitation of axial compressor rotor blades

Raubenheimer, Gert 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: Turbomachines are exposed to several environmental factors which may cause failure of components. One of these factors, high cycle fatigue, is often caused by blade utter. This thesis forms part of a project of the European Seventh Framework Programme (FP7), called project Future. Project Future is doing theoretical and experimental investigation into the occurrence of utter in turbomachinery. The objective of this thesis was to evaluate the effectiveness of a gas injection system as a means of exciting vibrations on the rst stage rotor blades of a compressor. Unsteady simulations of the excitation velocity perturbations were performed in the Computational Fluid Dynamics (CFD) software, Numeca FINE/Turbo. Experimental testing on the in-house Rofanco compressor test bench, using one prototype of the 15 injector system, provided data that was used to implement boundary conditions and to verify certain aspects of the unsteady simulation results. The simulation results revealed the following: the injector bypass frequency was so dominant that the excitation frequency was hardly detectable in the majority of cases. Furthermore, several secondary frequencies were consistently present. The injector bypass frequency, as well as the secondary frequencies, occurred as a result of the convolution of Fast Fourier Transforms. While the injector bypass frequencies can theoretically be eliminated, it will not be possible to eliminate the secondary frequencies from the blade response. In conclusion, according to the CFD results, it will not be possible to excite a single excitation frequency by making use of a nite number of gas injector vibration exciters. / AFRIKAANSE OPSOMMING: Turbomasjiene word onderwerp aan verskeie omgewingsfaktore wat falings van komponente kan veroorsaak. Een van hierdie faktore, naamlik hoëfrekwensie vermoeidheid, word onder andere veroorsaak deur lem adder. Hierdie tesis is deel van 'n projek in die Sewende Europese Raamwerk Program (European Seventh Framework Programme - FP7), projek Future. Projek Future doen teoretiese en eksperimentele ondersoek na die voorkoms van lemfl adder in turbomasjienerie. Die doelwit van hierdie tesis was om die effektiwiteit van 'n gasinspuiter vibrasie-opwekkingstelsel te evalueer, deur gebruik te maak van onbestendige simulasie in die berekenings vloei-meganika sagtewarepakket, Numeca FINE/Turbo. Eksperimentele toetswerk op die plaaslike Rofanco kompressortoetsbank, met 'n prototipe van die 15 inspuiter stelsel, het inligting verskaf wat gebruik is om die inlaattoestande te spesi seer en simulasieresultate te korreleer. Die simulasieresultate het getoon dat die frekwensie waarteen 'n lem by die inspuiters verbybeweeg, so prominent is, dat dit in die meerderheid van gevalle baie meer prominent is as die opwekkingsfrekwensie. Verder was daar ook deurgaans 'n aantal sekondêre frekwensies teenwoordig. Die teenwoordigheid van die inspuiter verbybeweeg frekwensie en die sekondêre frekwensies is die resultaat van die konvolusie van Vinnige Fourier Transforme. Alhoewel dit in teorie moontlik sal wees om die inspuiter verbybeweeg frekwensie te elimineer, is dit onmoontlik om die sekondêre frekwensies uit die lem vibrasie te elimineer. Ter opsomming, volgens die berekenings vloei-meganika resultate, is dit nie moontlik om met 'n stelsel van 'n eindige aantal inspuiters, 'n enkele vibrasie frekwensie op te wek nie.
9

Unsteady three-dimensional flow in a compressor cascade with inlet flow distortions

Farokhi, Saeed January 1981 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND AERO / Includes bibliographical references. / by Saeed Farokhi. / Ph.D.
10

Structural design of composite rotor blades with consideration of manufacturability, durability, and manufacturing uncertainties

Li, Leihong 02 July 2008 (has links)
A modular structural design methodology for composite blades is developed. This design method can be used to design composite rotor blades with sophisticate geometric cross-sections. This design method hierarchically decomposed the highly-coupled interdisciplinary rotor analysis into global and local levels. In the global level, aeroelastic response analysis and rotor trim are conduced based on multi-body dynamic models. In the local level, variational asymptotic beam sectional analysis methods are used for the equivalent one-dimensional beam properties. Compared with traditional design methodology, the proposed method is more efficient and accurate. Then, the proposed method is used to study three different design problems that have not been investigated before. The first is to add manufacturing constraints into design optimization. The introduction of manufacturing constraints complicates the optimization process. However, the design with manufacturing constraints benefits the manufacturing process and reduces the risk of violating major performance constraints. Next, a new design procedure for structural design against fatigue failure is proposed. This procedure combines the fatigue analysis with the optimization process. The durability or fatigue analysis employs a strength-based model. The design is subject to stiffness, frequency, and durability constraints. Finally, the manufacturing uncertainty impacts on rotor blade aeroelastic behavior are investigated, and a probabilistic design method is proposed to control the impacts of uncertainty on blade structural performance. The uncertainty factors include dimensions, shapes, material properties, and service loads.

Page generated in 0.089 seconds