Spelling suggestions: "subject:"computação simbólico"" "subject:"omputação simbólico""
1 |
Aplicação da computação simbólica na resolução de problemas de condução de calor em cilindros vazados com condições de contorno convectivasCorrêa, Valesca Alves [UNESP] 01 1900 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:35:41Z (GMT). No. of bitstreams: 0
Previous issue date: 2007-01Bitstream added on 2014-06-13T18:48:27Z : No. of bitstreams: 1
correa_va_dr_guara.pdf: 949805 bytes, checksum: 5d0ebae9cf9395efc83588da395f5ab9 (MD5) / Universidade Estadual Paulista (UNESP) / Com a evolução dos sistemas de computação simbólica ampliou-se a capacidade de modelagem e análise de problemas provenientes de equações diferenciais. Propõe-se a resolução da equação da condução de calor em regimes permanente e transiente para uma geometria cilíndrica com condições de contorno convectivas de forma analítica e numérica utilizando o software de computação simbólica Maple. Para este propósito serão empregados para a resolução analítica, o método de separação de variáveis e para a resolução numérica, o método das diferenças finitas com o esquema Crank- Nicolson e explícito. Os resultados obtidos das resoluções analíticas e numéricas, para algumas situações avaliadas são comparadas. As vantagens computacionais da utilização do software Maple são apresentadas. / The evolution of symbolic computation systems enlarges the capacity of modeling and analysis of problems by differential equations. The aim is the resolution of the conduction heat equation in unsteady and steady state for the cylindrical geometry with convective boundary conditions with analytical and numerical solutions using the Maple software. To this results will be used the separated variables method and finite differences to numerical solutions with Crank-Nicolson and explicit schemes. The results obtained for numerical and analytical solutions for some situations it will available and compared. The computational advantages of the Maple software are showed too.
|
2 |
Teorias de calibre no formalismo de 1ª ordem / First Order Formalism in gauge TheoriesCamargo Filho, Rogerio Tadeu da Rocha 26 April 2019 (has links)
O principal objetivo do presente trabalho é expor o procedimento de quantização de teorias de Yang-Mills, através do método de Faddeev-Popov, no formalismo de 1a Ordem, e investigar num primeiro momento sua equivalência (clássica e quântica) ao formalismo usual (2a Ordem) e algumas de suas aplicações, principalmente no cálculo de correções quânticas. Para isso, ideias gerais a respeito do processo de quantização via formalismo de Faddeev-Popov foram expostas, e posteriormente utilizadas no processo de quantização de teorias de Yang-Mills no formalismo de 1a Ordem. Apresenta-se também as ideias gerais relativas ao método de regularização dimensional utilizado no cálculo de correções quânticas à nível de 1-loop para a teoria de Yang-Mills no formalismo de 1a ordem, utilizando-se, para isso, computação simbólica. Foi demonstrado que via formalismo de 1a Ordem, a estrutura ultravioleta encontrada no propagador do bóson de gauge é consistente com a renormalizabilidade da teoria. Embora tenhamos diferenças quanto a estrutura das interações neste novo formalismo, a estrutura das divergências ultravioletas continua a mesma do formalismo usual. / The main objective of the present work is to expose the quantization procedure of Yang- Mills theories in first order formalism, by Faddeev Popov\'s method. We want to investigate the classical and quantum equivalence between first and second order formalism, and look and analyze the differences in practical calculations of quantum corrections. Therefore, the general ideas about quantizantion by Faddeev-Popov\'s method was exposed, and used later in first order theory. It is also presented in this work, the main ideas concerning to dimensional regularization used in quantum corrections calculations at one-loop order for Yang-Mills theories, using for that, symbolic computation. It has been shown that upon using the first order formalism, the ultraviolet structre found in gauge boson propagator is also consistent to the theory\'s renormalizability. Although we have differences concerning to interactions structures in this new formalism, the ultraviolet structures from usual formalism is also found in it.
|
Page generated in 0.0737 seconds