Spelling suggestions: "subject:"computational group 1heory"" "subject:"computational group btheory""
1 |
On certain subgroups of E8(2) and their Brauer character tablesNeuhaus, Peter January 2018 (has links)
For the exceptional group of Lie type E8(2) a maximal subgroup is either one of a known set or it is almost simple. In this thesis we compile a complete list of almost simple groups that may have a maximal embedding in E8(2) and in many cases it is proved that such an embedding does not exist. For the groups L2(32) and L2(128) we go further and find all conjugacy classes of their embeddings in E8(2). Extensive use is made of the theory of Brauer characters and modular representation theory, and as such include Brauer character tables in characteristic 2 for many small rank simple groups. The work in this thesis relies heavily on the computer package Magma and includes a collection of useful procedures for computational group theory. The results presented are the author's contribution to the ongoing attempt to classify the maximal subgroups of E8(2).
|
2 |
Computational investigation into finite groupsTaylor, Paul Anthony January 2011 (has links)
We briefly discuss the algorithm given in [Bates, Bundy, Perkins, Rowley, J. Algebra, 316(2):849-868, 2007] for determining the distance between two vertices in a commuting involution graph of a symmetric group.We develop the algorithm in [Bates, Rowley, Arch. Math. (Basel), 85(6):485-489, 2005] for computing a subgroup of the normalizer of a 2-subgroup X in a finite group G, examining in particular the issue of when to terminate the randomized procedure. The resultant algorithm is capable of handling subgroups X of order up to 512 and is suitable, for example, for matrix groups of large degree (an example calculation is given using 112x112 matrices over GF(2)).We also determine the suborbits of conjugacy classes of involutions in several of the sporadic simple groups?namely Janko's group J4, the Fischer sporadic groups, and the Thompson and Harada-Norton groups. We use our results to determine the structure of some graphs related to this data.We include implementations of the algorithms discussed in the computer algebra package MAGMA, as well as representative elements for the involution suborbits.
|
3 |
Constructive membership testing in classical groupsCosti, Elliot Mark January 2009 (has links)
Let G be a perfect classical group defined over a finite field F and generated by a set of standard generators X. Let E be the image of an absolutely irreducible representation of G by matrices over a field of the natural characteristic. Given the image of X in E, we present algorithms that write an arbitrary element of E as a straight-line programme in this image of X in E. The algorithms run in polynomial time.
|
4 |
Random generation and chief length of finite groupsMenezes, Nina E. January 2013 (has links)
Part I of this thesis studies P[subscript(G)](d), the probability of generating a nonabelian simple group G with d randomly chosen elements, and extends this idea to consider the conditional probability P[subscript(G,Soc(G))](d), the probability of generating an almost simple group G by d randomly chosen elements, given that they project onto a generating set of G/Soc(G). In particular we show that for a 2-generated almost simple group, P[subscript(G,Soc(G))](2) 53≥90, with equality if and only if G = A₆ or S₆. Furthermore P[subscript(G,Soc(G))](2) 9≥10 except for 30 almost simple groups G, and we specify this list and provide exact values for P[subscript(G,Soc(G))](2) in these cases. We conclude Part I by showing that for all almost simple groups P[subscript(G,Soc(G))](3)≥139/150. In Part II we consider a related notion. Given a probability ε, we wish to determine d[superscript(ε)] (G), the number of random elements needed to generate a finite group G with failure probabilty at most ε. A generalisation of a result of Lubotzky bounds d[superscript(ε)](G) in terms of l(G), the chief length of G, and d(G), the minimal number of generators needed to generate G. We obtain bounds on the chief length of permutation groups in terms of the degree n, and bounds on the chief length of completely reducible matrix groups in terms of the dimension and field size. Combining these with existing bounds on d(G), we obtain bounds on d[superscript(ε)] (G) for permutation groups and completely reducible matrix groups.
|
5 |
Graph Distinguishability and the Generation of Non-Isomorphic LabellingsBird, William Herbert 26 August 2013 (has links)
A distinguishing colouring of a graph G is a labelling of the vertices of G with colours such that no non-trivial automorphism of G preserves all colours. The distinguishing number of G is the minimum number of colours in a distinguishing colouring. This thesis presents a survey of the history of distinguishing colouring problems and proves new bounds and computational results about distinguishability. An algorithm to generate all labellings of a graph up to isomorphism is presented and compared to a previously published algorithm. The new algorithm is shown to
have performance competitive with the existing algorithm, as well as being able to process automorphism groups far larger than the previous limit. A specialization of the algorithm is used to generate all minimal distinguishing colourings of a set of graphs with large automorphism groups and compute their distinguishing numbers. / Graduate / 0984 / 0405 / bbird@uvic.ca
|
6 |
Encoding and detecting properties in finitely presented groupsGardam, Giles January 2017 (has links)
In this thesis we study several properties of finitely presented groups, through the unifying paradigm of encoding sought-after group properties into presentations and detecting group properties from presentations, in the context of Geometric Group Theory. A group law is said to be detectable in power subgroups if, for all coprime m and n, a group G satisfies the law if and only if the power subgroups G(<sup>m</sup>) and G(<sup>n</sup>) both satisfy the law. We prove that for all positive integers c, nilpotency of class at most c is detectable in power subgroups, as is the k-Engel law for k at most 4. In contrast, detectability in power subgroups fails for solvability of given derived length: we construct a finite group W such that W(<sup>2</sup>) and W(<sup>3</sup>) are metabelian but W has derived length 3. We analyse the complexity of the detectability of commutativity in power subgroups, in terms of finite presentations that encode a proof of the result. We construct a census of two-generator one-relator groups of relator length at most 9, with complete determination of isomorphism type, and verify a conjecture regarding conditions under which such groups are automatic. Furthermore, we introduce a family of one-relator groups and classify which of them act properly cocompactly on complete CAT(0) spaces; the non-CAT(0) examples are counterexamples to a variation on the aforementioned conjecture. For a subclass, we establish automaticity, which is needed for the census. The deficiency of a group is the maximum over all presentations for that group of the number of generators minus the number of relators. Every finite group has non-positive deficiency. For every prime p we construct finite p-groups of arbitrary negative deficiency, and thereby complete Kotschick's proposed classification of the integers which are deficiencies of Kähler groups. We explore variations and embellishments of our basic construction, which require subtle Schur multiplier computations, and we investigate the conditions on inputs to the construction that are necessary for success. A well-known question asks whether any two non-isometric finite volume hyperbolic 3-manifolds are distinguished from each other by the finite quotients of their fundamental groups. At present, this has been proved only when one of the manifolds is a once-punctured torus bundle over the circle. We give substantial computational evidence in support of a positive answer, by showing that no two manifolds in the SnapPea census of 72 942 finite volume hyperbolic 3-manifolds have the same finite quotients. We determine examples of sizeable graphs, as required to construct finitely presented non-hyperbolic subgroups of hyperbolic groups, which have the fewest vertices possible modulo mild topological assumptions.
|
Page generated in 0.1068 seconds