• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational and Experimental Techniques to Analyze Antibody-Analyte Transport and Reaction in Microchannels

January 2013 (has links)
The goal of this research is to investigate computational and experimental techniques to effectively analyze microscale fluid dynamics, transport, and mixing of an analyte-antibody system. This work is applicable to the development of an in-plane, passive mixer component of a miniature antibody-based sensor suitable for environmental monitoring, food testing, and medical diagnostics. The computational methods allow the efficient evaluation of microchannel designs to enhance analyte-antibody binding, which may reduce the time and cost required for experimental trials. We describe a computational algorithm to solve the governing equations for microscale fluid flow and transport in complex 2-D domains created through a graphical user interface. We implement the particle strength exchange method to solve the convection-diffusion-reaction equations, coupled to the boundary element method to compute the velocity field from the steady state Stokes equations. We validate the numerical methods by comparison to analytical and finite element method solutions. Because the chosen methods require no internal mesh, our algorithm provides an efficient alternative to grid-based methods when solving transport in complex geometries with internal obstacles. We characterize two fluorescein-antibody clones through competitive ELISA experiments and demonstrate the quenching effect of the antibodies with a fluorescence spectrophotometer. We describe a microchannel flow system to image the quenching of fluorescence by the antibody when fluorescein and fluorescein-antibody solutions are injected into separate inlets of the microchannel. We correlate the fluorescence intensity of microscope images of fluorescein flowing through the microchannel to concentrations of fluorescein to establish a calibration curve. This system provides a method to visualize and quantitatively analyze the mixing and reaction in a microfluidic device. We test the numerical methods by comparing the experimentally determined fluorescein concentration to the outlet amount numerically predicted by the computational model under identical conditions and find good agreement between the two fluorescein concentration profiles. We complete the transport-reaction computation in a set of microchannels with cylindrical obstructions. We find that decreasing the channel width and increasing the fluid path length by placing the obstruction on the walls is more effective than placing free-standing obstructions within the channel to enhance the fluorescein and fluorescein-antibody reaction. / acase@tulane.edu
2

Computational Design of 2D-Mechanical Metamaterials

McMillan, Kiara Lia 22 June 2022 (has links)
Mechanical metamaterials are novel materials that display unique properties from their underlying microstructure topology rather than the constituent material they are made from. Their effective properties displayed at macroscale depend on the design of their microstructural topology. In this work, two classes of mechanical metamaterials are studied within the 2D-space. The first class is made of trusses, referred to as truss-based mechanical metamaterials. These materials are studied through their application to a beam component, where finite element analysis is performed to determine how truss-based microstructures affect the displacement behavior of the beam. This analysis is further subsidized with the development of a graphical user interface, where users can design a beam made of truss-based microstructures to see how their design affects the beam's behavior. The second class of mechanical metamaterial investigated is made of self-assembled structures, called spinodoids. Their smooth topology makes them less prone to high stress concentrations present in truss-based mechanical metamaterials. A large database of spinodoids is generated in this study. Through data-driven modeling the geometry of the spinodoids is coupled with their Young's modulus value to approach inverse design under uncertainty. To see mechanical metamaterials applied to industry they need to be better understood and thoroughly characterized. Furthermore, more tools that specifically help push the ease in the design of these metamaterials are needed. This work aims to improve the understanding of mechanical metamaterials and develop efficient computational design strategies catered solely for them. / Master of Science / Mechanical metamaterials are hierarchical materials involving periodically or aperiodically repeating unit cell arrangements in the microscale. The design of the unit cells allows these materials to display unique properties that are not usually found in traditionally manufactured materials. This will enable their use in a multitude of potential engineering applications. The presented study seeks to explore two classes of mechanical metamaterials within the 2D-space, including truss-based architectures and spinodoids. Truss-based mechanical metamaterials are made of trusses arranged in a lattice-like framework, where spinodoids are unit cells that contain smooth structures resulting from mimicking the two phases that coexist in a phase separation process called spinodal decomposition. In this research, computational design strategies are applied to efficiently model and further understand these sub-classes of mechanical metamaterials.
3

Adaptability Of Generative Algorithms: A Means To Sustaining The Dynamic Design Processes

Damdere, Ekin 01 September 2010 (has links) (PDF)
This thesis is an investigation focusing on the adaptability of generative systems in a dynamic design problem, where the problem definition changes according to the changing conditions of the environment and transforming needs of the architectural space. This thesis, instead of discussing the dynamicity of the design processes, investigates the use of an adaptable generative system in a case-specific dynamic design problem to sustain its changing problem definitions. The research mainly looks into the potentials of generative systems in terms of adaptability and develops a generative system that is able to transform its structure in accordance with the dynamic constraints of a complex design process.
4

Performative Architecture As A Guideline For Transformation Of The Defence Line Of Amsterdam

Albayrak, Canan 01 January 2011 (has links) (PDF)
The main topic that is researched in this study is: what performative architecture is and its role in the design process and product. In the scope of performative architecture the aim is to focus what a building does rather than what it is and the fact that architecture should have the capability of being adaptable to changing time, conditions and environment. A design problem is taken under consideration and designed from the scope of performative architecture. The design problem is the transformation of the Defence Line around Amsterdam, designing new buildings with the recent technologies as additions to the forts remaining from 1900&rsquo / s. A &ldquo / performative model&rdquo / , which supports design from the conceptual stage until production of scale prototypes is structured by the author for this specific design problem. This performative model is used as a case study for the research of the role of the computational design tools in the design process and product of performative architecture. In addition to the design process, the role of using computer

Page generated in 0.1111 seconds