• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 687
  • 231
  • 110
  • 46
  • 42
  • 20
  • 20
  • 16
  • 11
  • 8
  • 7
  • 6
  • 5
  • 3
  • 3
  • Tagged with
  • 1756
  • 1756
  • 1756
  • 461
  • 406
  • 365
  • 229
  • 228
  • 201
  • 182
  • 181
  • 160
  • 155
  • 152
  • 149
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Pressure Disturbance Upstream of the Boundary Layer Data System

Leclere, Michelle S 01 July 2022 (has links) (PDF)
The primary objective for this work was to evaluate the reliability of computational fluid dynamics (CFD) tools in the prediction of upstream surface pressure disturbance and pressure drag of various instrument excrescence shapes for a small aircraft flight test device called the Boundary Layer Data System (BLDS). Insights on pressure disturbance will serve as a guide for the placement of BLDS probes/sensors, and pressure drag can be used to ensure sufficient adhesive is used to install BLDS instrumentation. The Mach number for all CFD cases was 0.12 and the Reynolds number based on excrescence height varied from 4 x 104 to 1 x 105. Excrescences studied have height to local boundary layer thickness ratios 0.75 < h/d < 1.9 and width to height ratios 3 ≤ w/h < 4. Wind tunnel tests were first conducted in the Cal Poly Fluids Lab’s 2 x 2-foot wind tunnel to obtain measurements of the upstream pressure disturbance created by a blunt BLDS housing and a streamlined BLDS fairing. Upstream surface pressure data was measured for two-dimensional excrescences and for three-dimensional models of the blunt and streamlined housings. A rake measurement of the undisturbed boundary layer profile at the leading edge location of each excrescence was also obtained to compare to the computed boundary layer. Prior to viscous modeling with CFD, potential flow theory was used to compute the inviscid upstream pressure disturbance for a generic excrescence on a smooth surface. A Rankine oval was generated using superposition, and a MATLAB program was written to evaluate ovals of varying chord and height. The potential flow results for the pressure distribution upstream of a Rankine oval were found to agree quite well with 2-D measurements and viscous CFD. Ansys ICEM CFD and FLUENT were used for computational modeling. A viscous CFD model was first created in two-dimensions and validated by comparing the upstream pressure disturbance results to the two-dimensional experimental measurements. The validated FLUENT case set-up was extended to three-dimensions, and three-dimensional models were created for blunt and streamlined BLDS excrescences. ICEM CFD was used to generate meshes for 2-D and 3-D models and FLUENT was used to solve the Reynolds-Averaged Navier Stokes (RANS) equations in conjunction with the Spalart-Allmaras turbulence model. Mesh independence studies and evaluation of discretization error were conducted to ensure that the final mesh employed provided adequate spatial resolution. The computed flow features, and results for dimensionless pressure and drag, were compared to experimental measurements and classic aerodynamic principles to evaluate the CFD solutions. It was concluded that CFD can accurately compute upstream pressure disturbances and pressure drag for excrescences mounted to a smooth surface. The viscous calculations showed that the effect of excrescence shape on upstream pressure field is only significant within 6 body heights of the leading edge. Beyond that, no significant difference in the pressure disturbance was observed between different excrescence configurations. Additionally, the spanwise pressure disturbance was found to become negligible at about 1-1.5 housing widths away from the upstream centerline of each excrescence regardless of its shape. Finally, all computed blunt housing models resulted in a pressure drag coefficient of about 0.5 which corroborates past experimental drag measurements. This thesis has set-up a working FLUENT CFD case that can be used for future computational studies related to the BLDS and provides detailed guidance for existing BLDS housing shapes beyond the rules of thumb currently used for informing housing designs.
132

A Computational Validation Study of Parallel TURBO for Rotor 35

Dear, Carolyn 07 May 2005 (has links)
A validation of parallel TURBO, an unsteady RANS turbomachinery solver, is performed for Rotor 35. Comparisons of the rotor's operational range for computational and experimental data as well as comparisons of its spanwise performance characteristics for a single blade passage provide depth to the validation and show a very favorable agreement. Further operational and performance comparisons against experiment are used for multiple blade passage simulations. Multiple blade passage simulations are shown to demonstrate noticable gains over the single blade passage simulation in solution accuracy against experiment. Also demonstrated are the asymmetric flow features that develop at the near stall operating condition for multiple blade passages. These single and multiple blade passage simulations are presented as groundwork for future research examining the effect of periodic boundary conditions on the growth of computational stall cells within a rotor or stage configuration.
133

Designing Active Control Laws in a Computational Aeroelasticity Environment

Newsom, Jerry Russell 26 April 2002 (has links)
The purpose of this dissertation is to develop a methodology for designing active control laws in a computational aeroelasticity environment. The methodology involves employing a systems identification technique to develop an explicit state-space model for control law design from the output of a computational aeroelasticity code. The particular computational aeroelasticity code employed in this dissertation solves the transonic small disturbance equation using a time-accurate, finite-difference scheme. Linear structural dynamics equations are integrated simultaneously with the computational fluid dynamics equations to determine the time responses of the structural outputs. These structural outputs are employed as the input to a modern systems identification technique that determines the Markov parameters of an "equivalent linear system". The eigensystem realization algorithm is then employed to develop an explicit state-space model of the equivalent linear system. Although there are many control law design techniques available, the standard Linear Quadratic Guassian technique is employed in this dissertation. The computational aeroelasticity code is modified to accept control laws and perform closed-loop simulations. Flutter control of a rectangular wing model is chosen to demonstrate the methodology. Various cases are used to illustrate the usefulness of the methodology as the nonlinearity of the computational fluid dynamics system is increased through increased angle-of-attack changes. / Ph. D.
134

Computational and Experimental Investigation of Supersonic Convection over a Laser Heated Target

Marineau, Eric Christian 08 June 2007 (has links)
This research concerns the development and validation of simulation of the beam-target interaction to determine the target temperature distribution as a function of time for a given target geometry, surface radiation intensity and free stream flow condition. The effect of a turbulent supersonic flow was investigated both numerically and experimentally. Experiments were in the Virginia Tech supersonic wind tunnel with a Mach 4 nozzle, ambient total temperature, total pressure of 160 psi and Reynolds number of 5 × 10⁷/<i>m</i> . The target consisted of a 6.35 mm stainless steel plate painted flat black. The target was irradiated with a 300 Watt continuous beam Ytterbium fiber laser generating a 4 mm Gaussian beam at 1.08 micron 10 cm from the leading edge where a 4 mm turbulent boundary layer prevailed. An absorbed laser power of 65, 81, 101, 120 Watts was used leading to a maximum heat flux between 1035 to 1910 <i>W/cm</i>². The target surface and backside temperature was measured using a mid-wave infrared camera. The backside temperature was also measured using eight type-K thermocouples. Two tests are made, one with the flow-on and the other with the flow-off. For the flow-on case, the laser is turned on after the tunnel starts and the flow reaches a steady state. For the flow-off case, the plate is heated at the same power but without the supersonic flow. The cooling effect is seen by subtracting the flow-off temperature from the flow-on temperature. This temperature subtraction is useful in cancelling the bias errors such that the overall uncertainty is significantly reduced. A new conjugate heat transfer algorithm was implemented in the GASP solver and validated by predicting the temperature distribution inside a cooled nozzle wall. The conjugate heat transfer algorithm was used to simulate the experiments at 81 and 65 Watts. Most computations were performed using the Spalart-Allmaras turbulence model on a 280, 320 cell grid. A grid convergence study was performed. At 65 Watts, good agreement was found in the predicted surface and backside temperature. On the surface, cooling was underpredicted close to the center and better agreement was seen away form the center. On the backside, good agreement was found for the temperature and temperature difference. Compared to the 65 Watt case, the 81 Watt case displays more asymmetry and a region of increased cooling is found upstream. The increased asymmetry was also seen on the backside by both the thermocouple and infrared temperature measurements. The computation underpredicts the surface temperature by 7% for the flow-off case. Again, cooling is underpredicted at the surface near the center. For all power settings, convective cooling significantly increases the time required to reach a given temperature. / Ph. D.
135

Rotor/Fuselage Unsteady Interactional Aerodynamics: A New Computational Model

Boyd, David Douglas Jr. 13 August 1999 (has links)
A new unsteady rotor/fuselage interactional aerodynamics model has been developed. This model loosely couples a Generalized Dynamic Wake Theory (GDWT) to a Navier-Stokes solution procedure. This coupling is achieved using a newly developed unsteady pressure jump boundary condition in the Navier-Stokes model. The new unsteady pressure jump boundary condition models each rotor blade as a moving pressure jump which travels around the rotor azimuth =and is applied between two adjacent planes in a cylindrical, non-rotating grid. Comparisons are made between predictions using this new model and experiments for an isolated rotor and for a coupled rotor/fuselage configuration. / Ph. D.
136

Numerical Simulation of Injection and Mixing in Supersonic Flow

Cox-Stouffer, Susan K. Jr. 17 December 1997 (has links)
A numerical investigation of the performance of two candidate designs for injection into supersonic flow, including a comparison of two renormalized group theory (RNG) based k-epsilon turbulence models with a more conventional k-epsilon model. The chosen designs were an unswept ramp injector with four injection ports and a novel nine-hole injector array. The objectives of the investigation were to provide reliable computational solutions to the flowfields in question using both RNG and standard k-epsilon turbulence models and to compare the solutions to experiment, thereby to judge the relative performance of the turbulence models. A second objective of the investigation was to use the computed data to provide design insights for the nine-hole injector array. This investigation made use of GASP(tm) version 2.2, a commercial computational fluid dynamics code that was augmented by the addition of one RNG-based k-epsilon turbulence model derived by Zhou, et. al. and one variant of Zhou's model, which was derived by the author. Mesh sequencing studies were performed to measure solution quality, with the fine mesh for the injector array containing roughly one million grid nodes and the fine mesh for the ramp injector containing more than six million grid nodes. Results of these studies indicated that the injector-array solution was significantly under-resolved in the farfield, though the quality was better in the vicinity of the injector itself. The ramp-injector solution, while not perfectly grid-resolved, showed much better grid convergence in both the nearfield and farfield. Accordingly, comparison with experiment was better for the ramp injector than for the injector array. For both injectors, the differences between solutions generated with RNG-based k-epsilon and standard k-epsilon turbulence models were negligibly small." Despite inadequate grid resolution in the farfield, the computational investigation of the nine-hole injector array did yield several important design insights. Particularly, the significance to mixing and losses of the placement of the outer injectors of the second and third rows was determined. / Ph. D.
137

Parallelization of the Euler Equations on Unstructured Grids

Bruner, Christopher William Stuteville 01 May 1996 (has links)
Several different time-integration algorithms for the Euler equations are investigated on two distributed-memory parallel computers using an explicit message-passing paradigm: these are classic Euler Explicit, four-stage Jameson-style Runge-Kutta, Block Jacobi, Block Gauss-Seidel, and Block Symmetric Gauss-Seidel. A finite-volume formulation is used for the spatial discretization of the physical domain. Both two- and three-dimensional test cases are evaluated against five reference solutions to demonstrate accuracy of the fundamental sequential algorithms. Different schemes for communicating or approximating data that are not available on the local compute node are discussed and it is shown that complete sharing of the evolving solution to the inner matrix problem at every iteration is faster than the other schemes considered. Speedup and efficiency issues pertaining to the various time-integration algorithms are then addressed for each system. Of the algorithms considered, Symmetric Block Gauss-Seidel has the overall best performance. It is also demonstrated that using parallel efficiency as the sole means of evaluating performance of an algorithm often leads to erroneous conclusions; the clock time needed to solve a problem is a much better indicator of algorithm performance. A general method for extending one-dimensional limiter formulations to the unstructured case is also discussed and applied to Van Albada’s limiter as well as Roe’s Superbee limiter. Solutions and convergence histories for a two-dimensional supersonic ramp problem using these limiters are presented along with computations using the limiters of Barth & Jesperson and Venkatakrishnan — the Van Albada limiter has performance similar to Venkatakrishnan’s. / Ph. D.
138

Computational Investigations of Boundary Condition Effects on Simulations of  Thermoacoustic Instabilities

Wang, Qingzhao 17 February 2016 (has links)
This dissertation presents a formulation of the Continuous Sensitivity Equation Method (CSEM) applied to the Computational Fluid Dynamics (CFD) simulation of thermoacoustic instability problems. The proposed sensitivity analysis approach only requires a single run of the CFD simulation. Moreover, the sensitivities of field variables, pressure, velocity and temperature to boundary-condition parameters are directly obtained from the solution to sensitivity equations. Thermoacoustic instability is predicted by the Rayleigh criterion. The sensitivity of the Rayleigh index is computed utilizing the sensitivities of field variables. The application of the CSEM to thermoacoustic instability problems is demonstrated by two classic examples. The first example explores the effects of the heated wall temperature on the one-dimensional thermoacoustic convection. The sensitivity of the Rayleigh index, which is the indicator of thermoacoustic instabilities, is computed by the sensitivity of field variables. As the heat wall temperature increases, the sensitivity of the Rayleigh index decreases. The evolution from positive to negative sensitivity values suggests the transition from a destabilizing trend to stabilizing trend of the thermoacoustic system. Thermoacoustic instabilities in a self-excited Rijke tube are investigated following the relatively simple thermoacoustic convection problem. The complexity of simulating the Rijke tube increases in both dimensions and mechanisms which incorporate the species transport process and chemical reactions. As a representative model of the large lean premixed combustor, Rijke tube has been extensively studied. Quantitative sensitivity analysis sets the present work apart from previous research on the prediction and control of thermoacoustic instabilities. The effects of two boundary-condition parameters, i.e. the inlet mass flow rate and the equivalence ratio, are tested respectively. Small variations in both parameters predict a rapid change in sensitivities of field variables in the early stage of the total time length of 1.2s. The sensitivity of the Rayleigh index "blows up" at a specific time point of the early stage. In addition, variations in the inlet mass flow rate and the equivalence ratio lead to opposite effects on the sensitivity of the Rayleigh index. There exist some common findings on the application of the CSEM. For both thermoacoustic problems, the sensitivities of field variables and the Rayleigh index exhibit oscillatory nature, confirming that thermoacoustic instability is an overall effect of the coupling process between fluctuations of pressure and heat release rate. All the sensitivities of the Rayleigh index show rapid changes and "blow up" in the early stage. Although the numerical errors could influence the fidelity of computational results, it is believed that the rapid changes reflect the susceptibility to thermoacoustic instabilities in the studied systems. It should also be noted that the sensitivities are obtained for small variations in influential parameters. Therefore, the resulting sensitivities do not predict the occurrence of thermoacoustic instabilities under a condition that is far from the reference state determined by either CFD simulation results (employed in this dissertation) or experimental data. The sensitivity solver developed for the present research has the feature of flexibility. Additional mechanisms and more complicated instability criteria could be easily incorporated into the solver. Moreover, the sensitivity equations formulated in this dissertation are derived from the full set of nonlinear governing equations. Therefore, it is possible to extend the use of the sensitivity solver to other CFD problems. The developed sensitivity solver needs to be optimized to gain better performance, which is considered to be the primary future work of this research. / Ph. D.
139

Investigation of the Hemodynamics of Coronary Arteries - Effect of Stenting

Coimbatore Selvarasu, Naresh Kumar 23 April 2013 (has links)
Cardiovascular diseases (CVD) are the leading cause of death in the world. According to the World Health Organization (WHO) 17.3 million people died from cardiovascular disease in 2008, representing 30% of all global deaths. The most common modality of treatment of occluded arteries is the use of stents. Despite the widespread use of stents, the incidence of post-stent restenosis is still high. The study of stents in conditions that are similar to in-vivo conditions is limited. This work tries to address the behavior of stents in conditions similar to in-vivo conditions in a generalized framework, thus providing insights for stent design and deployment. Three dimensional, time accurate computational fluid dynamics (CFD) simulations in a pulsatile flow with fluid-structure interaction (FSI) were carried out in realistic coronary arteries, with physiologically relevant flow parameters and dynamics due to induced motion of the heart. In addition, the geometric effects of the stent on the artery were studied to point towards possible beneficial stent deployment strategies. The results suggest that discontinuities in compliance and dynamic geometry cause critical changes in local hemodynamics, namely altering the local pressure and velocity gradients. Increasing the stent length, reducing the transition length and increasing the overexpansion caused adverse flow conditions. From this work, detailed flow characteristics and hemodynamic characteristics due to the compliance mismatch and applied motion were obtained that gave insights towards better stent design and deployment. / Ph. D.
140

Hemodynamic Optimization of a Passive Assist Total Cavopulmonary Connector for ages 1-20

Mack, Elizabeth January 2018 (has links)
Currently, the surgical procedure followed by the majority of cardiac surgeons to address right ventricular dysfunction is the Fontan procedure, which connects the superior and inferior vena cava directly to the left and right pulmonary arteries bypassing the right atrium. However, this is not the most efficient configuration from a hemodynamics perspective. The goal of this study is to develop a patient-specific 4-way connector to bypass the dysfunctional right ventricle and augment the pulmonary circulation. The 4-way connector was intended to channel the blood flow from the inferior and superior vena cava directly to the right and left pulmonary arteries. By creating a connector with proper hemodynamic characteristics, one can control the jet flow interactions between the inferior and superior vena cava and streamline the flow towards the right and left pulmonary arteries. In this study, the focus was on creating a system that could identify the optimal configuration for the 4-way connector for patients from 1-20 years of age. A platform was created in ANSYS that utilized the design of experiments (DOE) function to minimize power-loss and blood damage propensity in the connector based on junction geometries. A CFD model was created to simulate the blood flow through the connector. Then the geometry of the bypass connector was parameterized for the DOE process. The selected design parameters included inlet and outlet diameters, radius at the intersection, and length of the connector pathways. The chosen range for each geometric parameter was based on the relative size of the patient’s arteries found in the literature. It was confirmed that as the patient’s age and artery size change, the optimal size and shape of the connector also changes. However, the corner radius did not decrease at the same rate as the opening diameters. This means that creating different sized connectors is not just a matter of scaling the original connector to match the desired opening diameter. However, it was found that power losses within the connector decrease and average and maximum blood traversal time through the connector increased for increasing opening radius. A follow up study was conducted to try to reduce or negate a consistent recirculation area found at the center of the connectors. To accomplish this a flow diverter was added to the center of the connector and optimized for each of the connectors found for the age groups used. From this study, it was found that the diverter did negate the recirculation area form the centers of the connectors. A separate Blood Damage Index (BDI) study was also run on this optimized connector with a diverter, the optimized connectors from the first study and a baseline connector. This showed a decrease in IVC sourced BDI for the optimized versions of the connector compared to the baseline geometries. This information could be used to create a more specific relationship between the opening radius and the flow characteristics. So in order to create patient specific connectors, either a new more complicated trend needs to be found or an optimization program would need to be run on each patient’s specific geometry when they need a new connector. / Master of Science / Currently, the surgical procedure followed by the majority of cardiac surgeons to address a nonfunctioning right portion of the heart is the Fontan procedure, which connects the two major inflow venous structures from the right side of the heart directly to the two major outflow venous structures, bypassing the right nonfunctioning right portion of the heart. However, this is not the most efficient configuration from a fluid flow perspective. The goal of this study is to develop a patient-specific 4-way connector to bypass the nonfunctioning right side of the heart and aid in overall circulation. Just like the Fontan procdure, the 4-way connector was intended to channel the blood flow from the two main inflow venous structures directly to the two major outflow venous structures. By creating a connector with proper fluid flow characteristics, one can control the flow interactions between the two inflows and streamline the flow towards the two outflow venous structures. In this study, the focus was on creating a system that could identify the optimal configuration for the 4-way connector for patients from 1-20 years of age. A platform was created in a modeling and simulation program, called ANSYS, that utilized the design of experiments (DOE) function to minimize power-loss and the likelihood of blood damage in the connector based on connector geometries. A CFD model was created to simulate the blood flow through the connector. Then the geometry of the bypass connector was parameterized for the DOE process. The selected design parameters included inlet and outlet diameters, radius at the intersection, and length of the connector pathways. The chosen range for each geometric parameter was based on the relative size of the patient’s arteries found in the literature. It was confirmed that as the patient’s age and artery size change, the optimal size and shape of the connector also changes. From the results of the first study showed a very decreasing relationship between the opening radius and the corner radius as the opening radius increased in size. It was also found that power losses within the connector decrease and average and maximum blood traversal time through the connector increased for increasing opening radius. A follow up study was conducted to try to reduce or negate a consistent recirculation area found at the center of the connectors. To accomplish this a flow diverter was added to the center of the connector and optimized for each of the connectors found for the age groups used. From this study, it was found that the diverter did negate the recirculation area form the centers of the connectors. A separate Blood Damage Index (BDI) study was also run on this optimized connector with a diverter, the optimized connectors from the first study and a baseline connector. This showed a decrease in BDI from the venous structure with the larger inlet flow for the optimized versions of the connector compared to the baseline geometries. This information could be used to create a more specific relationship between the opening radius and the flow characteristics. So in order to create patient specific connectors, either a new more complicated trend needs to be found or an optimization program would need to be run on each patient’s specific geometry when they need a new connector.

Page generated in 0.141 seconds