Spelling suggestions: "subject:"computer barograms"" "subject:"computer _programs""
621 |
A report on a C-E technical translation project using Google TranslateMai, Guan Hui, Jennifer January 2018 (has links)
University of Macau / Faculty of Arts and Humanities. / Department of English
|
622 |
Fault tolerance and reliability patternsUnknown Date (has links)
The need to achieve dependability in critical infrastructures has become indispensable for government and commercial enterprises. This need has become more necessary with the proliferation of malicious attacks on critical systems, such as healthcare, aerospace and airline applications. Additionally, due to the widespread use of web services in critical systems, the need to ensure their reliability is paramount. We believe that patterns can be used to achieve dependability. We conducted a survey of fault tolerance, reliability and web service products and patterns to better understand them. One objective of our survey is to evaluate the state of these patterns, and to investigate which standards are being used in products and their tool support. Our survey found that these patterns are insufficient, and many web services products do not use them. In light of this, we wrote some fault tolerance and web services reliability patterns and present an analysis of them. / by Ingrid A. Buckley. / Thesis (M.S.C.S.)--Florida Atlantic University, 2008. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2008. Mode of access: World Wide Web.
|
623 |
Towards a methodology for building reliable systemsUnknown Date (has links)
Reliability is a key system characteristic that is an increasing concern for current systems. Greater reliability is necessary due to the new ways in which services are delivered to the public. Services are used by many industries, including health care, government, telecommunications, tools, and products. We have defined an approach to incorporate reliability along the stages of system development. We first did a survey of existing dependability patterns to evaluate their possible use in this methodology. We have defined a systematic methodology that helps the designer apply reliability in all steps of the development life cycle in the form of patterns. A systematic failure enumeration process to define corresponding countermeasures was proposed as a guideline to define where reliability is needed. We introduced the idea of failure patterns which show how failures manifest and propagate in a system. We also looked at how to combine reliability and security. Finally, we defined an approach to certify the level of reliability of an implemented web service. All these steps lead towards a complete methodology. / by Ingrid A. Buckley. / Thesis (Ph.D.)--Florida Atlantic University, 2012. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2012. Mode of access: World Wide Web.
|
624 |
Induction motor speed control with a microprocessor.January 1983 (has links)
by Lam Chun-wing. / Chinese title: / Bibliography: leaves 131-135 / Thesis (M.Phil.)--Chinese University of Hong Kong, 1983
|
625 |
Parameter estimation of the bounded binomial distribution.January 1983 (has links)
by Ho Yat Fan. / Bibliography: leaf 59 / Thesis (M.Phil.) -- Chinese University of Hong Kong, 1983
|
626 |
An unbalanced bidding model for unit price contracts.January 1984 (has links)
by Kwong Wing Kie. / Bibliography : leaf 30 / Thesis (M.B.A.)--Chinese University of Hong Kong, 1984
|
627 |
Generation of symbolic functions via ordered binary tree data structure.January 1984 (has links)
Tse Yiu Keung. / Bibliography: leaves 74-75 / Thesis (M.Ph.)--Chinese University of Hong Kong, 1984
|
628 |
Software-assisted data prefetching algorithms.January 1995 (has links)
by Chi-sum, Ho. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 110-113). / Abstract --- p.i / Acknowledgement --- p.iii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Overview --- p.1 / Chapter 1.2 --- Cache Memories --- p.1 / Chapter 1.3 --- Improving Cache Performance --- p.3 / Chapter 1.4 --- Improving System Performance --- p.4 / Chapter 1.5 --- Organization of the dissertation --- p.6 / Chapter 2 --- Related Work --- p.8 / Chapter 2.1 --- Cache Performance --- p.8 / Chapter 2.2 --- Non-Blocking Cache --- p.9 / Chapter 2.3 --- Cache Prefetching --- p.10 / Chapter 2.3.1 --- Hardware Prefetching --- p.10 / Chapter 2.3.2 --- Software-assisted Prefetching --- p.13 / Chapter 2.3.3 --- Improving Cache Effectiveness --- p.22 / Chapter 2.4 --- Other Techniques to Reduce and Hide Memory Latencies --- p.25 / Chapter 2.4.1 --- Register Preloading --- p.25 / Chapter 2.4.2 --- Write Policies --- p.26 / Chapter 2.4.3 --- Small Specialized Cache --- p.26 / Chapter 2.4.4 --- Program Transformation --- p.27 / Chapter 3 --- Stride CAM Prefetching --- p.30 / Chapter 3.1 --- Introduction --- p.30 / Chapter 3.2 --- Architectural Model --- p.32 / Chapter 3.2.1 --- Compiler Support --- p.33 / Chapter 3.2.2 --- Hardware Support --- p.35 / Chapter 3.2.3 --- Model Details --- p.39 / Chapter 3.3 --- Optimization Issues --- p.39 / Chapter 3.3.1 --- Eliminating Reductant Prefetching --- p.40 / Chapter 3.3.2 --- Code Motion --- p.40 / Chapter 3.3.3 --- Burst Mode --- p.44 / Chapter 3.3.4 --- Stride CAM Overflow --- p.45 / Chapter 3.3.5 --- Effects of Loop Optimizations --- p.46 / Chapter 3.4 --- Practicability --- p.50 / Chapter 3.4.1 --- Evaluation Methodology --- p.51 / Chapter 3.4.2 --- Prefetch Accuracy --- p.54 / Chapter 3.4.3 --- Stride CAM Size --- p.56 / Chapter 3.4.4 --- Software Overhead --- p.60 / Chapter 4 --- Stride Register Prefetching --- p.67 / Chapter 4.1 --- Motivation --- p.67 / Chapter 4.2 --- Architectural Model --- p.67 / Chapter 4.2.1 --- Stride Register --- p.69 / Chapter 4.2.2 --- Compiler Support --- p.70 / Chapter 4.2.3 --- Prefetch Bits --- p.72 / Chapter 4.2.4 --- Operation Details --- p.77 / Chapter 4.3 --- Practicability and Optimizations --- p.78 / Chapter 4.3.1 --- Practicability on NASA7 Benchmark Programs --- p.78 / Chapter 4.3.2 --- Optimization Issues --- p.81 / Chapter 4.4 --- Comparison Between Stride CAM and Stride Register Models --- p.84 / Chapter 5 --- Small Software-Driven Array Cache --- p.87 / Chapter 5.1 --- Introduction --- p.87 / Chapter 5.2 --- Cache Pollution in MXM --- p.88 / Chapter 5.3 --- Architectural Model --- p.89 / Chapter 5.3.1 --- Operation Details --- p.91 / Chapter 5.4 --- Effectiveness of Array Cache --- p.92 / Chapter 6 --- Conclusion --- p.96 / Chapter 6.1 --- Conclusion --- p.96 / Chapter 6.2 --- Future Research: An Extension of the Stride CAM Model --- p.97 / Chapter 6.2.1 --- Background --- p.97 / Chapter 6.2.2 --- Reference Address Series --- p.98 / Chapter 6.2.3 --- Extending the Stride CAM Model --- p.100 / Chapter 6.2.4 --- Prefetch Overhead --- p.109 / Bibliography --- p.110 / Appendix --- p.114 / Chapter A --- Simulation Results - Stride CAM Model --- p.114 / Chapter A.l --- Execution Time --- p.114 / Chapter A.1.1 --- BTRIX --- p.114 / Chapter A.1.2 --- CFFT2D --- p.115 / Chapter A.1.3 --- CHOLSKY --- p.116 / Chapter A.1.4 --- EMIT --- p.117 / Chapter A.1.5 --- GMTRY --- p.118 / Chapter A.1.6 --- MXM --- p.119 / Chapter A.1.7 --- VPENTA --- p.120 / Chapter A.2 --- Memory Delay --- p.122 / Chapter A.2.1 --- BTRIX --- p.122 / Chapter A.2.2 --- CFFT2D --- p.123 / Chapter A.2.3 --- CHOLSKY --- p.124 / Chapter A.2.4 --- EMIT --- p.125 / Chapter A.2.5 --- GMTRY --- p.126 / Chapter A.2.6 --- MXM --- p.127 / Chapter A.2.7 --- VPENTA --- p.128 / Chapter A.3 --- Overhead --- p.129 / Chapter A.3.1 --- BTRIX --- p.129 / Chapter A.3.2 --- CFFT2D --- p.130 / Chapter A.3.3 --- CHOLSKY --- p.131 / Chapter A.3.4 --- EMIT --- p.132 / Chapter A.3.5 --- GMTRY --- p.133 / Chapter A.3.6 --- MXM --- p.134 / Chapter A.3.7 --- VPENTA --- p.135 / Chapter A.4 --- Hit Ratio --- p.136 / Chapter A.4.1 --- BTRIX --- p.136 / Chapter A.4.2 --- CFFT2D --- p.137 / Chapter A.4.3 --- CHOLSKY --- p.137 / Chapter A.4.4 --- EMIT --- p.138 / Chapter A.4.5 --- GMTRY --- p.139 / Chapter A.4.6 --- MXM --- p.139 / Chapter A.4.7 --- VPENTA --- p.140 / Chapter B --- Simulation Results - Array Cache --- p.141 / Chapter C --- NASA7 Benchmark --- p.145 / Chapter C.1 --- BTRIX --- p.145 / Chapter C.2 --- CFFT2D --- p.161 / Chapter C.2.1 --- cfft2dl --- p.161 / Chapter C.2.2 --- cfft2d2 --- p.169 / Chapter C.3 --- CHOLSKY --- p.179 / Chapter C.4 --- EMIT --- p.192 / Chapter C.5 --- GMTRY --- p.205 / Chapter C.6 --- MXM --- p.217 / Chapter C.7 --- VPENTA --- p.220
|
629 |
Training aids for translator designMeyer, James R January 2010 (has links)
Typescript, etc. / Digitized by Kansas Correctional Industries
|
630 |
An evaluation of ML/I (EPS) macros for structured FORTRAN extensionsPark, Soo Kyung January 2010 (has links)
Typescript, etc. / Digitized by Kansas Correctional Industries
|
Page generated in 0.0731 seconds