• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algorithms for the Optimization of Quantum Circuits

Amy, Matthew January 2013 (has links)
This thesis investigates techniques for the automated optimization of quantum circuits. In the first part we develop an exponential time algorithm for synthesizing minimal depth quantum circuits. We combine this with effective heuristics for reducing the search space, and show how it can be extended to different optimization problems. We then use the algorithm to compute circuits over the Clifford group and T gate for many of the commonly used quantum gates, improving upon the former best known circuits in many cases. In the second part, we present a polynomial time algorithm for the re-synthesis of CNOT and T gate circuits while reducing the number of phase gates and parallelizing them. We then describe different methods for expanding this algorithm to optimize circuits over Clifford and T gates.
2

Algorithms for the Optimization of Quantum Circuits

Amy, Matthew January 2013 (has links)
This thesis investigates techniques for the automated optimization of quantum circuits. In the first part we develop an exponential time algorithm for synthesizing minimal depth quantum circuits. We combine this with effective heuristics for reducing the search space, and show how it can be extended to different optimization problems. We then use the algorithm to compute circuits over the Clifford group and T gate for many of the commonly used quantum gates, improving upon the former best known circuits in many cases. In the second part, we present a polynomial time algorithm for the re-synthesis of CNOT and T gate circuits while reducing the number of phase gates and parallelizing them. We then describe different methods for expanding this algorithm to optimize circuits over Clifford and T gates.

Page generated in 0.1239 seconds